
OPERATING INSTRUCTIONS FOR

Model 6400EH

UV Fluorescence SO₂ Analyzer

P/N M77713

Teledyne Analytical Instruments

Copyright © 2008 Teledyne Instruments/ Analytical Instruments

All Rights Reserved. No part of this manual may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any other language or computer language in whole or in part, in any form or by any means, whether it be electronic, mechanical, magnetic, optical, manual, or otherwise, without the prior written consent of Teledyne Instruments/ Analytical Instruments, 16830 Chestnut Street, City of Industry, CA 91749-1580.

Warranty

This equipment is sold subject to the mutual agreement that it is warranted by us free from defects of material and of construction, and that our liability shall be limited to replacing or repairing at our factory (without charge, except for transportation), or at customer plant at our option, any material or construction in which defects become apparent within one year from the date of shipment, except in cases where quotations or acknowledgements provide for a shorter period. Components manufactured by others bear the warranty of their manufacturer. This warranty does not cover defects caused by wear, accident, misuse, neglect or repairs other than those performed by TI/AI or an authorized service center. We assume no liability for direct or indirect damages of any kind and the purchaser by the acceptance of the equipment will assume all liability for any damage which may result from its use or misuse.

We reserve the right to employ any suitable material in the manufacture of our apparatus, and to make any alterations in the dimensions, shape or weight of any parts, in so far as such alterations do not adversely affect our warranty.

Important Notice

This instrument provides measurement readings to its user, and serves as a tool by which valuable data can be gathered. The information provided by the instrument may assist the user in eliminating potential hazards caused by his process; however, it is essential that all personnel involved in the use of the instrument or its interface, with the process being measured, be properly trained in the process itself, as well as all instrumentation related to it.

The safety of personnel is ultimately the responsibility of those who control process conditions. While this instrument may be able to provide early warning of imminent danger, it has no control over process conditions, and it can be misused. In particular, any alarm or control systems installed must be tested and understood, both as to how they operate and as to how they can be defeated. Any safeguards required such as locks, labels, or redundancy, must be provided by the user or specifically requested of TI/AI at the time the order is placed.

Therefore, the purchaser must be aware of the hazardous process conditions. The purchaser is responsible for the training of personnel, for providing hazard warning methods and instrumentation per the appropriate standards, and for ensuring that hazard warning devices and instrumentation are maintained and operated properly.

Teledyne Instruments/ Analytical Instruments, the manufacturer of this instrument, cannot accept responsibility for conditions beyond its knowledge and control. No statement expressed or implied by this document or any information disseminated by the manufacturer or its agents, is to be construed as a warranty of adequate safety control under the user's process conditions.

Specific Model Information

Instrument Serial Number:

Instrument Range:	
Calibrated for:	
Background Gas:	
Zero Gas:	
Span Gas:	

Safety Messages

Your safety and the safety of others is very important. We have provided many important safety messages in this manual. Please read these messages carefully.

A safety message alerts you to potential hazards that could hurt you or others. Each safety message is associated with a safety alert symbol. These symbols are found in the manual and inside the instrument. The definition of these symbols is described below:

GENERAL WARNING/CAUTION: Refer to the instructions for details on the specific danger. These cautions warn of specific procedures which if not followed could cause bodily Injury and/or damage the instrument.

CAUTION: HOT SURFACE WARNING: This warning is specific to heated components within the instrument. Failure to heed the warning could result in serious burns to skin and underlying tissue.

WARNING: ELECTRICAL SHOCK HAZARD: Dangerous voltages appear within this instrument. This warning is specific to an electrical hazard existing at or nearby the component or procedure under discussion. Failure to heed this warning could result in injury and/or death from electrocution.

Technician Symbol: All operations marked with this symbol are to be performed by qualified maintenance personnel only.

CAUTION:

THE ANALYZER SHOULD ONLY BE USED FOR THE PURPOSE AND IN THE MANNER DESCRIBED IN THIS MANUAL.

IF YOU USE THE ANALYZER IN A MANNER OTHER THAN THAT FOR WHICH IT WAS INTENDED, UNPREDICTABLE BEHAVIOR COULD RESULT POSSIBLY ACCOMPANIED WITH HAZARDOUS CONSEQUENCES. This manual provides information designed to guide you through the installation, calibration operation and maintenance of your new analyzer. Please read this manual and keep it available.

Occasionally, some instruments are customized for a particular application or features and/or options added per customer requests. Please check the front of this manual for any additional information in the form of an Addendum which discusses specific information, procedures, cautions and warnings that may be peculiar to your instrument.

Manuals do get lost. Additional manuals can be obtained from TI/AI at the address given in the Appendix. Some of our manuals are available in electronic form via the internet. Please visit our website at: www.teledyne-ai.com.

Table of Contents

List of Figures	. ix
List of Tables	. xi
Documentation	1
1.1. Using This Manual Addendum	2
Specifications, Approvals & Warranty	5
2.1. Specifications	5
2.2. CE Mark Compliance	6
2.3. Warranty	7
Getting Started	9
3.1. Unpacking and Initial Setup	9
3.1.1. Electrical Connections:	10
3.1.1.1. External Pump	10
3.2 Pneumatic Connections	11
3.2.2 Pneumatic Connections to the 6400EH	11
3.2.2.1 Pneumatic Connections to 6400EH Basic Configuration	11
3.2.2.2 Connections with Internal Valve Options Installed	12
3.2.3 6400EH Layout	13
3.3 Initial Operation	15
3.3.1 Warning Messages	15
3.3.2 Test Functions	15
3.3.3 Interferents for SO ₂ Measurements	15
Frequently Asked Questions	17
Optional Hardware and Software	19
5.1 Zero/Span Valves (Option 50)	19
5.2 Internal Zero/Span Gas Generator (Option 51)	20

UV Fluorescence SO2 Analyzer

5.3 Zero and Two Span Point Valve Option (OPT 52)	20
5.4 Hydrocarbon Kicker Option (OPT 65)	22
Operating Instructions	25
6.1 Warning Messages	25
6.2 Test Functions	25
6.2.1 Test Channel Output	26
6.2.2 Range Units	26
6.2.3 Using the 6400EH with a Hessen Protocol Network	26
6.2.4 Default iDAS Channels	28
6.2.5 Remote Operation Using the External Digital I/O	28
6.2.5.1 Status Outputs	28
6.2.5.2 Control Inputs	29
Calibration and Calibration Check Procedures	31
7.1 Manual Calibration with the Zero and Two Span Point Valve Option (OPT 52) installed	31
7.2 Manual Calibration Check with the Zero and Two Span Point Valve Option (OPT 52) installed	33
Instrument Maintenance	35
8.1 Maintenance Schedule	35
8.2 Predictive Diagnostics	35
Theory of Operation	37
9.1 The UV Light Path	37
9.1.1 The Reference Detector	38
9.1.2 Direct Measurement Interferences	38
9.2 Pneumatic Operation	39
9.2.1 Sample Gas Flow	39
9.2.2 Pneumatic Sensors	40
9.2.2.1 Sample Pressure Sensor	40
9.2.2.2 Vacuum Pressure Sensor	40
9.2.2.3 Sample Flow Calculation	40
9.3 Electronic Operation	41
Troubleshooting & Repair	43

Appendix D - Electronic Schematics	89
Appendix C Warranty Questionnaire	85
B-3: 6400E/EH Expendables Kit	84
6400EH	83
B-2: Recommended Spare Parts Stocking Levels Model	01
B-1: 6400EH Spare Parts List	81
Appendix B - 6400EH Spare Parts List	-
	79
Appendix A-5: 6400EH iDAS Functions, Revision C.0	77
Appendix A-4: 6400EH Signal I/O Definitions, Revision C.0	72
Appendix A-3: Warnings and Test Functions, Revision C.0	69
Appendix A-2: Setup Variables For Serial I/O, Revision C.0	62
Appendix A-1: 6400EH Software Menu Trees, Revision C.0	54
	53
10.4 Technical Assistance	52
10.3.2.2 PMT Hardware Calibration (FACTORY CAL)	49
10.3.2.1 Adjusting the UV Lamp (<i>Peaking the Lamp</i>)	47
10.3.2 Sensor Module Repair & Cleaning	46
10.3.1 Repairing the Sample Gas Flow Control Assembly	44
10.3 Repair Procedures	43 44
10.2 Subsystem Checkout 10.2.1 Pneumatic Sensor Assembly	43 43
10.1.2 Fault Diagnosis with Test Functions	43 43
	43 43
10.1.1 Fault Diagnosis with Warning Messages	43

List of Figures

Figure 3-1: Example of Pneumatic Connections to 6400EH External Pump
Figure 3-2: Pneumatic Connections to 6400EH with Zero and Two Span Point Valve Option
Figure 3-3: Internal Pneumatic flow for 6400EH in Basic Configuration
Figure 3-4: 6400EH Layout (Basic Unit – No Valve Options) 14
Figure 3-5: Available Functions in the Model 6400EH16
Figure 5-1: Pneumatic Diagram of the 6400EH With Z/S Option Installed
Figure 5-2: Pneumatic Diagram of the 6400EH With 2-Span Point Option Installed
Figure 5-3: Hydrocarbon Scrubber (Kicker) – OPT 6523
Figure 5-4: 6400EH Internal Pneumatic Diagram with Hydrocarbon Scrubber Installed
Figure 9-1: UV Light Path
Figure 9-2: Pneumatic Diagram of the6400EH – Base Configuration
Figure 9-3: 6400EH Electronic Block Diagram41
Figure 9-4: Model 6400EH Power Distribution Block Diagram 42
Figure 10-1: Flow Control Assembly45
Figure 10-2: Sensor Module Wiring and Pneumatic Fittings46
Figure 10-3: Shutter Assembly - Exploded View47
Figure 10-4: Location of UV Reference Detector Potentiometer49
Figure 10-5: Pre-Amplifier Board Layout50
Figure A-1: Basic Sample Display Menu54

Figure A-2:	Sample Display Menu - Z/S Valve Option installed	55
Figure A-3:	Primary Setup Menu (Except iDAS)	56
Figure A-4:	Primary Setup Menu (iDAS)	57
Figure A-5:	Secondary Setup Menu (COMM & VARS)	58
0	Secondary Setup Menu (COMM Menu with Ethernet Card)	
Figure A-7:	Secondary Setup Menu - HESSEN Submenu	60
Figure A-8:	Secondary Setup Menu (DIAG)	61

List of Tables

Table 2-1: Model 6400EH Basic Unit Specifications	. 5
Table 3-1: Inlet / Outlet Connector Nomenclature	11
Table 3-2: Possible Warning Messages at Start-Up	15
Table 5-1: Two-Point Span Valve Operating States	22
Table 6-1: Additional 6400EH Warning Messages	25
Table 6-2: Additional 6400EH Test Functions	25
Table 6-3: Additional 6400 EH Test Parameters Available for Analog Output A3	26
Table 6-4: 6400EH Default Hessen Status Bit Assignments	27
Table 6-5: Status Output Signals	28
Table 6-6: Control Input Signals	30
Table 8-1: Predictive Uses for Test Functions	35
Table 10-1: Warning Messages - Indicated Failures	43
Table 10-2: Test Functions - Possible Causes for Out-Of-Range Values	43
Table 10-3: Example of HVPS Power Supply Outputs	48
Table A-1: 6400EH Setup Variables, Revision C.0	62
Table A-2: 6400EH Warning Messages, Revision C.0	69
Table A-3: 6400EH Test Functions, Revision C.0	70
Table A-4: 6400EH Signal I/O Definitions, Revision C.0	72
Table A-5: 6400EH DAS Trigger Events, Revision C.0	77
Table A-6: 6400EH iDAS Functions, Revision C.0	77
Table A-7: Terminal Command Designators, Revision C.0	79
Table B-1: Model 6400EH Spare Parts List	81
Table D-1: List of Included Electronic Schematics	89

DANGER COMBUSTIBLE GAS USAGE WARNING

This is a general purpose instrument designed for use in a non-hazardous area. It is the customer's responsibility to ensure safety especially when combustible gases are being analyzed since the potential of gas leaks always exist.

The customer should ensure that the principles of operating this equipment are well understood by the user. Misuse of this product in any manner, tampering with its components, or unauthorized substitution of any component may adversely affect the safety of this instrument.

Since the use of this instrument is beyond the control of Teledyne Analytical Instruments, referred as TAI, no responsibility by TAI, its affiliates, and agents for damage or injury from misuse or neglect of this equipment is implied or assumed.

Documentation

- Note: Throughout this manual, words printed in capital, bold letters, such as SETUP or ENTR represent messages as they appear on the analyzer's front panel display
- Note: The flowcharts in this manual contain typical representations of the analyzer's display during the various operations being described. These representations are not intended to be exact and may differ slightly from the actual display of your instrument.

Thank you for purchasing the Model 6400EH UV Fluorescence SO_2 Analyzer.

The electronic manual is in Adobe[®] Systems Inc. "Portable Document Format". The Adobe[®] Acrobat Reader_® software, which is necessary to view these files, can be downloaded for free from the internet at http://www.adobe.com/.

The electronic version of the manual has many advantages:

- Keyword and phrase search feature
- Figures, tables and internet addresses are linked so that clicking on the item will display the associated feature or open the website.
- A list of chapters and sections as well as thumbnails of each page are displayed to the left of the text.
- Entries in the table of contents are linked to the corresponding locations in the manual.
- Ability to print sections (or all) of the manual

Additional documentation for the Model 6400EH UV Fluorescence SO₂ Analyzer is available from Teledyne Instruments' website at http://www.teledyne-ai.com/manuals/

- APICOM software manual
- Multi-drop manual
- DAS Manual

1.1. Using This Manual Addendum

This manual addendum has the same overall structure as that of the 6400E operator's manual, to simplify referring between the two. The manual has the following sections:

Table of Contents:

Outlines the contents of the addendum in the order the information is presented. This is a good overview of the topics covered in the manual. There is also a list of tables, a list of figures and a list of appendices.

Specifications and Warranty

This section contains a list of the analyzer's performance specifications, a description of the conditions and configuration under which EPA equivalency was approved and Teledyne Instrument's warranty statement.

Getting Started:

A concise set of instructions for setting up, installing and running your analyzer for the first time.

FAQ:

Answers to the most frequently asked questions about operating the analyzer.

Optional Hardware & Software:

A description of optional equipment to add functionality to your analyzer.

Operation Instructions:

This section includes step by step instructions for operating the analyzer and using its various features and functions.

Calibration Procedures:

General information and step by step instructions for calibrating your analyzer.

Instrument Maintenance:

Description of preventative maintenance procedures that should be regularly performed on you instrument to assure good operating condition.

Theory of Operation:

This section describes the aspects of 6400EH operation that differ from the 6400E manual.

Maintenance & Troubleshooting Section:

This section includes pointers and instructions for diagnosing problems that are specific to the 6400EH. The 6400E manual has a more complete troubleshooting section, most of which also applies to the 6400EH.

Appendices:

For easier access and better updating, some information has been separated out of the manual and placed in a series of appendices at the end of this addendum. These include: software menu trees, warning messages, definitions of iDAS & serial I/O variables, spare parts list, repair questionnaire, interconnect listing and drawings, and electronic schematics.

Specifications, Approvals & Warranty

2.1. Specifications

Min/Max Range (Physical Analog Output)	In 1 ppb increments from 10ppm to 5,000 ppm, dual ranges or auto ranging	
Measurement Units	ppm, mg/m3 (user selectable)	
Zero Noise ¹	0.05 ppm rms	
Span Noise ¹	< 0.5% of reading (above 50 ppm)	
Lower Detectable Limit ²	0.1 ppm rms	
Zero Drift (24 hours)	< 1 ppm	
Zero Drift (7 days)	< 2 ppm	
Span Drift (7 Days)	< 0.5% FS	
Linearity	1 % of full scale	
Precision	0.5% of reading	
Temperature Coefficient	< 0.1% per ₀C	
Voltage Coefficient	< 0.05% per V	
Lag Time ¹	5 sec	
Rise/Fall Time ¹	95% in < 30 sec	
Sample Flow Rate	700 cm ³ /min. ±10%	
Temperature Range	5-40°C	
Humidity Range	0 - 95% RH, non-condensing	
Dimensions H x W x D	7" x 17" x 23.5" (178 mm x 432 mm x 597 mm)	
Weight, Analyzer (Basic Configuration)	45 lbs (20.5 kg) w/internal pump	
Weight, Pump Pack	16 lbs (7 kg)	
AC Power Rating	100 V, 50/60 Hz (3.25A); 115 V, 60 Hz (3.0 A); 220 – 240 V, 50/60 Hz (2.5 A)	
Environmental	Installation category (over-voltage category) II; Pollution degree 2	
Analog Outputs	Three (3) Outputs	

Table 2-1: Model 6400EH Basic Unit Specifications

Analog Output Ranges	100 mV, 1 V, 5 V, 10 V, 2-20 or 4-20 mA isolated current loop.
	All Ranges with 5% Under/Over Range
Analog Output Resolution 1 part in 4096 of selected full-scale voltage	
Status Outputs	8 Status outputs from opto-isolators
Control Inputs 6 Control Inputs, 3 defined, 3 spare	
Serial I/O	One (1) RS-232; One (1) RS-485 (2 connecters in parallel)
	Baud Rate : 300 – 115200: Optional Ethernet Interface
Certifications	EN61326 (1997 w/A1: 98) Class A,
	FCC Part 15 Subpart B Section 15.107 Class A,
	ICES-003 Class A (ANSI C63.4 1992) & AS/NZS 3548 (w/A1 & A2; 97) Class A.
	IEC 61010-1:90 + A1:92 + A2:95,
1 As defined by the USEPA.	
2 Defined as twice the zero noise level by the USEPA.	

2.2. CE Mark Compliance

Emissions Compliance

The TAI UV Fluorescence SO_2 Analyzer 6400EH was tested and found to be fully compliant with:

EN61326 (1997 w/A1: 98) Class A, FCC Part 15 Subpart B Section 15.107 Class A, ICES-003 Class A (ANSI C63.4 1992) & AS/NZS 3548 (w/A1 & A2; 97) Class A.

Tested on 21 February 2003 - 08 March 2003 at CKC Laboratories, Inc., Report Number CE03-021 A.

Safety Compliance

The TAI UV Fluorescence SO_2 Analyzer 6400EH was tested and found to be fully compliant with:

I EC 61010-1:90 + A1:92 + A2:95,

Issued by CKC Laboratories on 4 April 2003, Report Number WO-80146.

2.3. Warranty

Warranty Policy (02024d)

Prior to shipment, TAI equipment is thoroughly inspected and tested. Should equipment failure occur, TAI assures its customers that prompt service and support will be available.

Coverage

After the warranty period and throughout the equipment lifetime, TAI stands ready to provide on-site or in-plant service at reasonable rates similar to those of other manufacturers in the industry. All maintenance and the first level of field troubleshooting is to be performed by the customer.

NON-TAI MANUFACTURED EQUIPMENT

Equipment provided but not manufactured by TAI is warranted and will be repaired to the extent and according to the current terms and conditions of the respective equipment manufacturers warranty.

GENERAL

During the warranty period, TAI warrants each Product manufactured by TAI to be free from defects in material and workmanship under normal use and service. Expendable parts are excluded.

If a Product fails to conform to its specifications within the warranty period, TAI shall correct such defect by, in TA's discretion, repairing or replacing such defective Product or refunding the purchase price of such Product.

The warranties set forth in this section shall be of no force or effect with respect to any Product: (i) that has been altered or subjected to misuse, negligence or accident, or (ii) that has been used in any manner other than in accordance with the instruction provided by TAI, or (iii) not properly maintained.

THE WARRANTIES SET FORTH IN THIS SECTION AND THE REMEDIES THEREFORE ARE EXCLUSIVE AND IN LIEU OF ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE OR OTHER WARRANTY OF QUALITY, WHETHER EXPRESSED OR IMPLIED. THE REMEDIES SET FORTH IN THIS SECTION ARE THE EXCLUSIVE REMEDIES FOR BREACH OF ANY WARRANTY CONTAINED HEREIN. TAI SHALL NOT BE LIABLE FOR ANY INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THIS AGREEMENT OF TAI'S PERFORMANCE HEREUNDER, WHETHER FOR BREACH OF WARRANTY OR OTHERWISE

Terms and Conditions

All units or components returned to TAI should be properly packed for handling and returned freight prepaid to the nearest designated Service Center. After the repair, the equipment will be returned, freight prepaid.

Getting Started

3.1. Unpacking and Initial Setup

TO AVOID PERSONAL INJURY, ALWAYS USE TWO PERSONS TO LIFT AND CARRY THE MODEL 6400EH.

- 1. Inspect the received packages for external shipping damage. If damaged, please advise the shipper first, then TAI.
- 2. Included with your analyzer is a printed record of the final performance characterization performed on your instrument at the factory. This record is an important quality assurance and calibration record for this instrument. It should be placed in the quality records file for this instrument.
- 3. Carefully remove the top cover of the analyzer and check for internal shipping damage.
 - Remove the set screw located in the top, center of the rear panel
 - Remove the screws fastening the top cover to the unit (four per side).
 - Lift the cover straight up.
- Note: Printed circuit assemblies (PCAs) are sensitive to electrostatic discharges too small to be felt by the human nervous system. Failure to use ESD protection when working with electronic assemblies will void the instrument warranty.

See Chapter 12 of the 6400E Manual (P/N 04515) for more information on preventing ESD damage.

CAUTION:

NEVER DISCONNECT ELECTRONIC CIRCUIT BOARDS, WIRING HARNESSES OR ELECTRONIC SUBASSEMBLIES WHILE THE UNIT IS UNDER POWER.

- 4. Inspect the interior of the instrument to make sure all circuit boards and other components are in good shape and properly seated.
- 5. Check the connectors of the various internal wiring harnesses and pneumatic hoses to make sure they are firmly and properly seated.
- 6. Verify that all of the optional hardware ordered with the unit has been installed. These are checked on the paperwork accompanying the analyzer.

3.1.1. Electrical Connections:

For full details on the electrical connections of the 6400EH, please refer to Chapter 3 in the 6400E user's manual.

3.1.1.1. External Pump

The 6400EH is equipped with an external pneumatic pump. This pump is powered separately from the instrument via it's own power cord. The pump has no ON/OFF switch and should begin operating as soon as it is plugged into a live power supply.

CHECK THE VOLTAGE / FREQUENCY LABEL ON THE REAR PANEL OF THE INSTRUMENT AND ON THE EXTERNAL PUMP FOR COMPATIBILITY WITH THE LOCAL POWER. DO NOT PLUG IN EITHER THE ANALYZER OR THE PUMP UNLESS THE VOLTAGES OR FREQUENCIES ARE CORRECT.

POWER CONNECTION MUST HAVE A FUNCTIONING GROUND CONNECTION. DO NOT DEFEAT THE GROUND WIRE ON POWER PLUG.

TURN OFF ANALYZER POWER BEFORE DISCONNECTING OR CONNECTING ELECTRICAL SUBASSEMBLIES.

DO NOT OPERATE WITH COVER OFF.

3.2 Pneumatic Connections

3.2.2 Pneumatic Connections to the 6400EH

Note: To prevent dust from getting into the analyzer, it was shipped with small plugs inserted into each of the pneumatic fittings on the rear panel. Make sure that all dust plugs are removed before attaching exhaust and supply gas lines.

REAR PANEL LABEL	FUNCTION	
Sample	Connects the sample gas to the analyzer. When operating the analyzer without zero/span option, this is also the inlet for any calibration gases.	
Exhaust	Connect an exhaust gas line to this port to the inlet of the external pump.	
Zero Air	On Units with zero/span valve option installed, this port connects the zero air gas or the zero air cartridge to the analyzer.	

Table 3-1: Inlet / Outlet Connector Nomenclature

Figure 3-5 of the 6400E Manual shows the internal pneumatic flow of the 6400E in its standard configuration. For a diagram of the internal pneumatic flow of the 6400EH, see Figure 3-2 of this manual.

3.2.2.1 PNEUMATIC CONNECTIONS TO 6400EH BASIC CONFIGURATION

The pneumatic connections for the 6400EH analyzer in its basic configuration are nearly identical to those described the 6400E Manual in Section 3.1.2.2 except that the 6400EH has an external pump. Therefore:

- A pneumatic line of ¹/₄" PTEF must be attached between the analyzer's exhaust port and the inlet port of the pump.
- The exhaust from must be vented outside the shelter or immediate area surrounding the instrument using a maximum of 10 meters of 1/4" PTFE tubing.

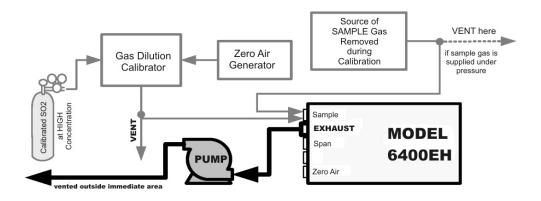


Figure 3-1: Example of Pneumatic Connections to 6400EH External Pump

This change is true for all configurations and variations of the 6400EH.

3.2.2.2 CONNECTIONS WITH INTERNAL VALVE OPTIONS INSTALLED

- There is no IZS option available for the 6400EH.
- An additional valve option (Option 52 Zero & Two Span Points) is available on the 6400EH. The pneumatic set up for this option is:

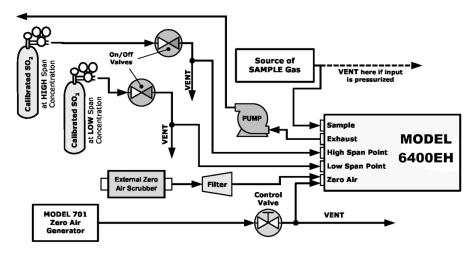


Figure 3-2: Pneumatic Connections to 6400EH with Zero and Two Span Point Valve Option

3.2.3 6400EH Layout

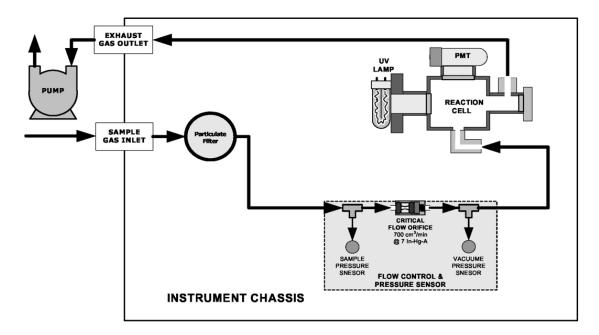


Figure 3-3: Internal Pneumatic flow for 6400EH in Basic Configuration

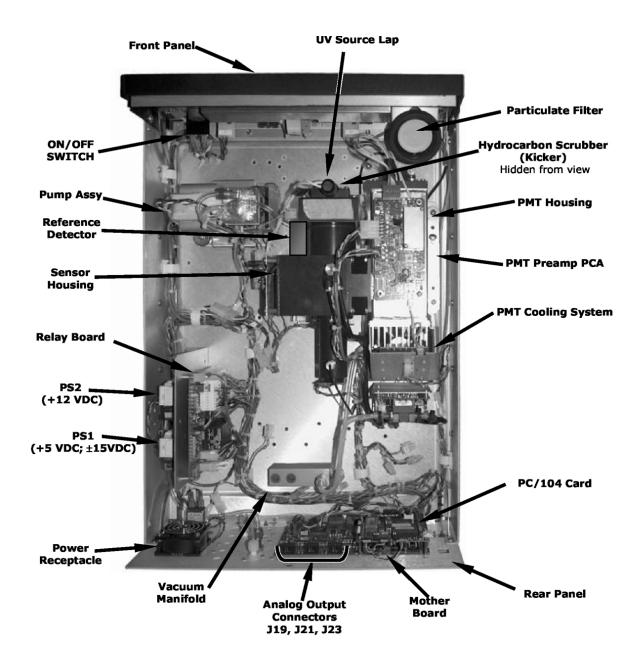


Figure 3-4: 6400EH Layout (Basic Unit – No Valve Options)

3.3 Initial Operation

With the following exceptions, the operation of the 6400EH is nearly identical to that of the 6400E. Please refer to the 6400E User's Manual, Chapter 3, for details on initial operation, including common warning messages, functional checkout of the instrument, initial calibration and common interferents for the 6400EH.

3.3.1 Warning Messages

Please refer to the 6400E User's Manual, Chapter 3, for a complete listing of warnings for the 6400EH. The following table lists warnings that differ in the 6400EH from those described in the 6400E manual.

MESSAGE	MEANING
Vacuum Pressure Warning	The vacuum pressure reading is out of it's allowed range. The pump may have failed, or the instrument may have a leak or obstruction in the flow path.

Table 3-2: Possible Warning Messages at Start-Up

3.3.2 Test Functions

Check to make sure that the analyzer is functioning within allowable operating parameters As described in Section 3.2.4 of the 6400E Manual (P/N 04515). The available test functions for the 6400EH is shown in Figure 3-5.

3.3.3 Interferents for SO₂ Measurements

Hydrocarbons are a significant interferent for UV fluorescent SO_2 measurements, however, the typical 6400EH application does not have hydrocarbons in the sample stream. Therefore, in order to reduce cost to the customer, the 6400EH in its standard configuration does not include a hydrocarbon kicker/scrubber.

If your application includes hydrocarbons in the sample gas stream, it is very important that they be removed from the sample gas prior to them entering the analyzer's sample chamber. A hydrocarbon Kicker Option (OPT 65) package (see Section 5 below) is available for this purpose.

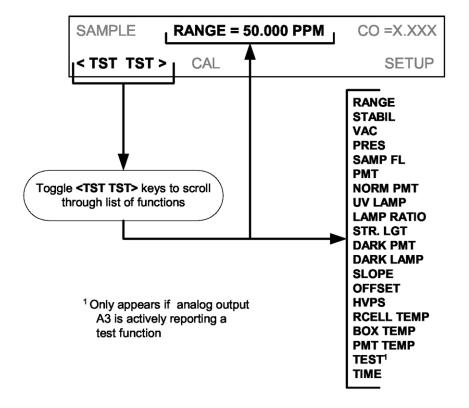


Figure 3-5: Available Functions in the Model 6400EH

Frequently Asked Questions

- Q: How long does the sample pump last?
- A: The sample pump should last about one year and the pump diaphragms should to be replaced annually or when necessary.

To determine if the diaphragm on a 6400EH needs replacing check the **VAC** test function (instead of the **PRES** function as described in the 6400E Manual). If the **VAC** value is > 10 in-Hg-A, the diaphragm should be replaced.

Optional Hardware and Software

With the following additions, changes and exceptions, the options listed in Chapter 5 of the 6400E Manual are also available for the 6400EH.

5.1 Zero/Span Valves (Option 50)

The 6400EH zero/span valve option is identical to that of the 6400E in respect to operation and valve states (see Table 5-1 of the 6400E Manual). The internal pneumatic connections are slightly different.

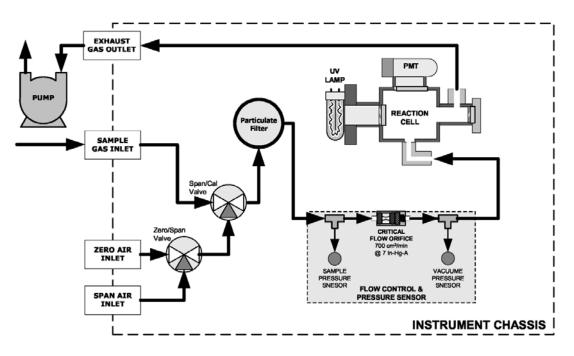


Figure 5-1: Pneumatic Diagram of the 6400EH With Z/S Option Installed.

5.2 Internal Zero/Span Gas Generator (Option 51)

The IZS valve option (OPT 51) is not available for the 6400EH.

5.3 Zero and Two Span Point Valve Option (OPT 52)

This option includes a special set of valves that allows two separate SO_2 mixtures to enter the analyzer from two independent sources. Typically these two gas mixtures will come from two, separate, pressurized bottles of certified calibration gas: one mixed to produce a SO_2 concentration equal to the expected span calibration value for the application and the other mixed to produce a concentration at or near the midpoint of the intended measurement range. Individual gas inlets, labeled **HIGH SPAN** and **LOW SPAN** are provided at the back on the analyzer.

The valves allow the user to switch between the two sources via keys on the front panel or from a remote location by way of either the analyzer's digital control inputs or by sending commands over it's serial I/O port(s). The pneumatic diagram for instruments with the zero and two span point valve option (OPT 52) is shown in Figure 5-2.

Note: The analyzer's software only allows the SLOPE and OFFSET to be calculated when sample is being routed through the HIGH SPAN inlet.

The LOW SPAN gas is for midpoint reference checks only.

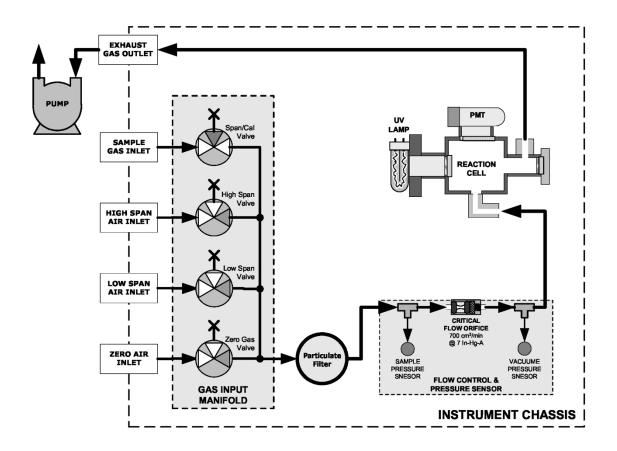


Figure 5-2: Pneumatic Diagram of the 6400EH With 2-Span Point Option Installed

Table 5-1 describes the state of each valve during the analyzer's various operational modes.

MODE	VALVE	CONDITION
	Sample/Cal	Open to SAMPLE inlet
	Zero Gas Valve	Closed to ZERO AIR inlet
SAMPLE	High Span Valve	Closed to HIGH SPAN inlet
	Low Span Valve	Closed to LOW SPAN inlet
	Sample/Cal	Closed to SAMPLE inlet
ZERO	Zero Gas Valve	Open to ZERO AIR inlet
CAL	High Span Valve	Closed to HIGH SPAN inlet
	Low Span Valve	Closed to LOW SPAN inlet
	Sample/Cal	Closed to SAMPLE inlet
HIGH	Zero Gas Valve	Closed to ZERO AIR inlet
SPAN CAL	High Span Valve	Open to HIGH SPAN inlet
	Low Span Valve	Closed to LOW SPAN inlet
LOW	Sample/Cal	Closed to SAMPLE inlet
	Zero Gas Valve	Closed to ZERO AIR inlet
SPAN CHECK	High Span Valve	Closed to HIGH SPAN inlet
	Low Span Valve	Open to LOW SPAN inlet

Table 5-1: Two-Point Span Valve Operating States

5.4 Hydrocarbon Kicker Option (OPT 65)

This option is specifically designed for those applications where hydrocarbons are present in the sample gas stream. It includes an internal, scrubber consisting of a tube of a specialized plastic that absorbs hydrocarbons very well located within an outer flexible plastic tube shell.

As gas flows through the inner tube, hydrocarbons are absorbed into the membrane walls and transported through the membrane wall and into the hydrocarbon free, purge gas flowing through the outer tube (see Figure 5-3). This process is driven by the hydrocarbon concentration gradient between the inner and outer of the tubes.

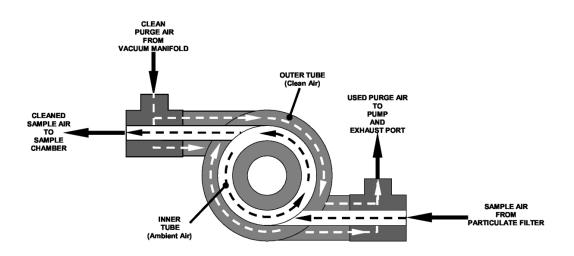


Figure 5-3: Hydrocarbon Scrubber (Kicker) – OPT 65

The scrubbed air from the inner tube is returned to be used as the purge gas in the outer tube after it passes through the analyzers reaction cell. This means that when the analyzer is first started, the concentration gradient between the inner and outer tubes is small and the scrubber's efficiency is relatively low. When the instrument is turned on after having been off for more than 30 minutes, it takes a certain amount of time for the gradient to become large enough for the scrubber to adequately remove hydrocarbons from the sample air.

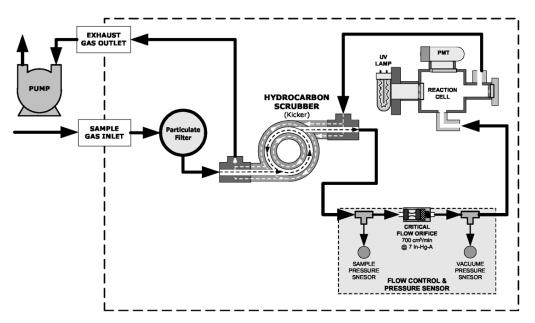


Figure 5-4: 6400EH Internal Pneumatic Diagram with Hydrocarbon Scrubber Installed

Operating Instructions

6.1 Warning Messages

Please refer to the 6400E User's Manual, Chapter 3, for a complete listing of warnings for the 6400EH. The following table lists warnings that differ in the 6400EH from those described in the 6400E manual.

Table 6-1: Additional 6400EH Warning Messages

MESSAGE	MEANING		
Vacuum Pressure Warning	The vacuum pressure reading is out of its allowed range. The pump may have failed, or the instrument may have a leak or obstruction in the flow path.		

6.2 Test Functions

Please refer to the 6400E Manual, Chapter 6, for a complete list of test functions for the 6400EH. The following table lists test functions that are in addition to or differ from those listed there.

Table 6-2: Additional 6400EH Test Functions

DISPL	AY	PARAMETER	UNITS	DESCRIPTION
VAC	;	Vacuum Pressure	In-Hg-A	The actual pressure measured on the vacuum side of the 6400EH's critical flow orifice. This is the pressure of the gas in the instrument's sample chamber.
PRES	S	Sample GAS Pressure	in-Hg-A	The current pressure of the sample gas as it enters the sample inlet at the back of the analyzer, but upstream of the critical flow orifice and before the gas enters the reaction cell.

6.2.1 Test Channel Output

When activated, output channel A3 can be used to report one of the test functions viewable from the SAMPLE mode display. To activate the A3 channel and select a test function, follow instructions in Section 6.9.10 of the 6400E Manual.

The following table lists test functions that are in addition to or differ from those listed in Table 6-14 of the 6400E Manual.

Table 6-3: Additional 6400 EH Test Parameters Available for Analog Output A3

TEST CHANNEL	TEST PARAMETER RANGE	
VACUUM PRESSURE	0-40 in-Hg-A	

6.2.2 Range Units

The 6400EH only displays concentrations in parts per million $(10^6 \text{ mols per mol}, \text{PPM})$ or milligrams per cubic meter (mg/m³, MGM).

• NOT AVAILABLE: Parts per billion (10^9 mols per mol, **PPB**) and micrograms per cubic meter ($\mu g/m_3$, **UGM**).

To change the concentration units of the 6400EH follow the instructions found in Section 6.7.7 of the 6400E Manual.

6.2.3 Using the 6400EH with a Hessen Protocol Network

The set up and use of the 6400EH in Hessen protocol networks is the sane as described in Section 6.12.4 of the M1 00E Manual (P/N 04515) except that there are minor differences in the status flags. The following table supercedes Table 6-27 of the 6400E Manual.

STATUS FLAG NAME	DEFAULT BIT ASSIGNMENT			
WARNING FLAGS	WARNING FLAGS			
SAMPLE FLOW WARNING	0001			
PMT DET WARNING		0002		
UV LAMP WARNING		0002		
HVPS WARNING		0004		
DARK CAL WARNING		0008		
RCELL TEMP WARNING		0010		
PMT TEMP WARNING		0040		
INVALID CONC		0080		
OPERATIONAL FLAGS				
In Manual Calibration Mode		0200		
In Zero Calibration Mode		0400		
In Low Span Calibration Mode		0800		
In Span Calibration Mode		0800		
UNITS OF MEASURE FLAGS				
UGM ¹		0000		
MGM		2000		
PPB ¹		4000		
РРМ		6000		
SPARE/UNUSED BITS		0020, 0100, 8000		
UNASSIGNED FLAGS				
Box Temp Warning System F		Reset		
Sample Press Warning Front Pa		inel Warning		
Vacuum Press Warning	Cal Warning			
Rear Board Not Detected	Cannot D	Dyn Zero		
Relay Board Warning	Cannot Dyn Span			
¹ Although assigned flags, these units are not available on the 6400EH				

Table 6-4: 6400EH Default Hessen Status Bit Assignments

6.2.4 Default iDAS Channels

The default Data Channels included in the 6400EH analyzer's software include the **CONC**, **PNUMT & CALDAT** channels. The **FAST & DETAIL** preset channels are not included.

6.2.5 Remote Operation Using the External Digital I/O

6.2.5.1 STATUS OUTPUTS

The function and pin assignment5s for the 6400EH digital status outputs are:.

STATUS CONNECTOR PIN NUMBER ¹	STATUS DEFINITION	CONDITION		
1	SYSTEM OK	ON if no faults are present.		
2	CONC VALID	OFF any time the HOLD OFF feature is active, such as during calibration or when other faults exist possibly invalidating the current concentration measurement (example: sample flow rate is outside of acceptable limits).		
		ON if concentration measurement is valid.		
3	HIGH RANGE	ON if unit is in high range of the AUTO Range Mode		
4	ZERO CAL	ON whenever the instrument's ZERO point is being calibrated.		
5	HIGH SPAN CAL	ON whenever the instrument is set for DUAL or AUTO reporting range mode an it's high range span point is being calibrated		
6	DIAG MODE	ON whenever the instrument is in DIAGNOSTIC mode		
7	LOW SPAN CAL	ON whenever the instrument is set for DUAL or AUTO reporting range mode an it's lows range span point is being calibrated .		
8	SPARE			
D	EMITTER BUS	The emitters of the transistors on pins 1-8 are bussed together.		
	SPARE			
+	DC POWER	+ 5 VDC, 300 mA source (combined rating with Control Output, if used).		

Table 6-5: Status Output Signals

STATUS CONNECTOR PIN NUMBER ¹	STATUS DEFINITION	CONDITION		
\checkmark	Digital Ground	The ground level from the analyzer's internal DC power supplies		
¹ Located on Rear Panel				

6.2.5.2 CONTROL INPUTS

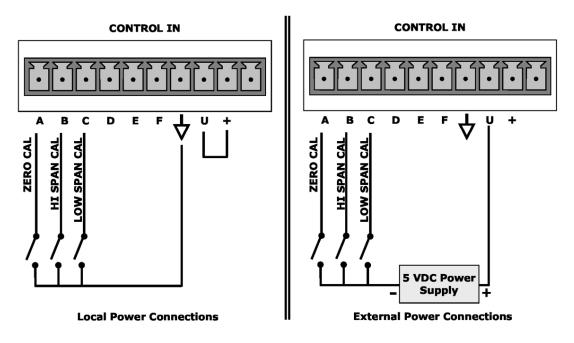


Figure 6-1: Control Input Connector

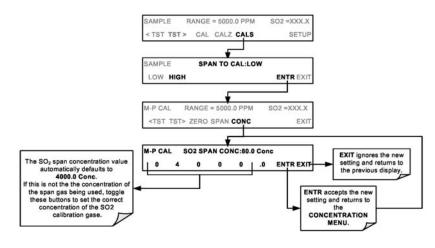
Table 6-6: Control Input Signals

INPUT #	STATUS DEFINITION	ON CONDITION
А	REMOTE ZERO CAL	The analyzer is placed in Zero Calibration mode. The mode field of the display will read ZERO CAL R.
В	REMOTE HIGH SPAN CAL	If the instrument is set for DUAL or AUTO reporting rang mode, activating this input causes the analyzer to enter high range span calibration mode. The mode field of the display will read SPAN CAL R.
С	REMOTE LO SPAN CAL	The analyzer is placed in low span calibration mode as part of performing a low span (midpoint) calibration. The mode field of the display will read LO CAL R.
D, E & F	SPARE	
\triangleleft	Digital Ground	The ground level from the analyzer's internal DC power supplies (same as chassis ground)
U	External Power input	Input pin for +5 VDC required to activate pins A – F.
+	5 VDC output	Internally generated 5V DC power. To activate inputs A – F, place a jumper between this pin and the "U" pin. The maximum amperage through this port is 300 mA (combined with the analog output supply, if used).

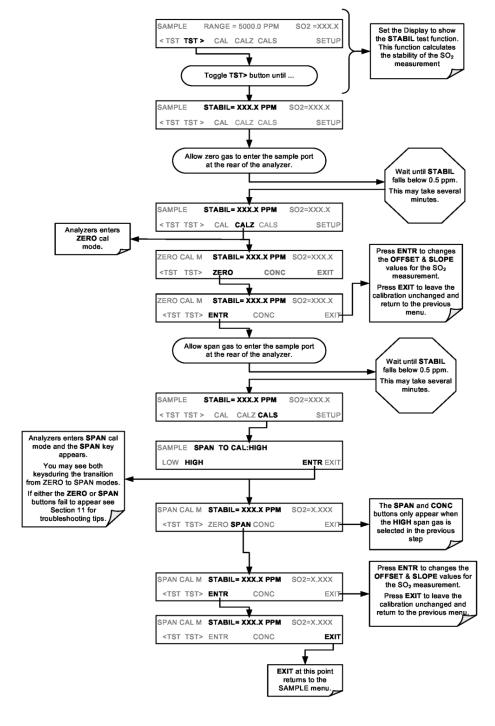
Calibration and Calibration Check Procedures

Calibration procedures for the 6400EH are the same as those for the 6400E. One exception to this statement is that the 6400EH has a special valve option, Zero and Two Span Point Valve Option - OPT 52 (See Section 5.1), that allows a mid-span point be checked.

7.1 Manual Calibration with the Zero and Two Span Point Valve Option (OPT 52) installed

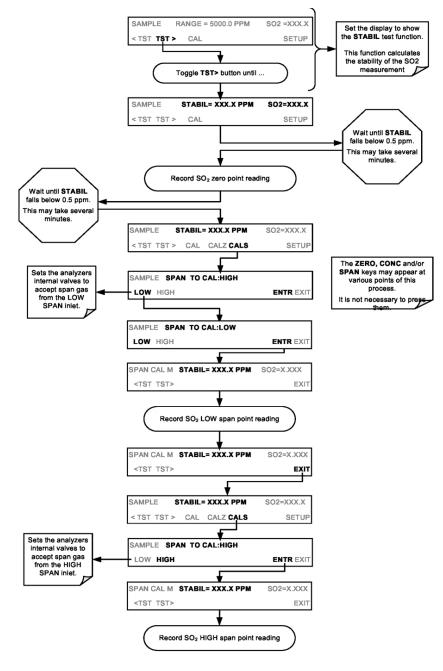

Note: It is only possible to calibrate to the high span gas. The low span gas is only used for calibration checks.

Zero and Span calibrations using the Zero and two Span Valve option are similar to that described in Section 7.2, except that:


- Zero air and both span gas is supplied to the analyzer through the zero gas and span gas inlets rather than through the sample inlet.
- The zero and cal operations are initiated directly and independently with dedicated keys (CALZ & CALS)

STEP ONE: Connect the sources of zero air and span gas to the respective ports on the rear panel (see Figure 3-2 of this manual).

STEP TWO: Set the expected SO₂ high span gas value:



STEP THREE: Perform the calibration according to the following flow chart:

7.2 Manual Calibration Check with the Zero and Two Span Point Valve Option (OPT 52) installed

Set up is identical to that shown in **STEP ONE** of the preceding section. To perform the zero/span check:

Instrument Maintenance

8.1 Maintenance Schedule

There is no Internal IZS offered for the 6400EH.

8.2 Predictive Diagnostics

Because the 6400EH's internal pneumatics are monitored in a different manner than those of the 6400E there are some differences in how the instruments test functions are used as predictive diagnostics. Table 8-1 of this addendum supersedes Table 9-2 of the 6400E Manual

TEST FUNCTION	IDAS FUNCTION	CONDITION	BEHAV EXPECTED	IOR ACTUAL	INTERPRETATION
PRES	SMPPRS	Sample gas pressure upstream of the critical flow orifice.	Constant within atmospheric changes	Slowly increasing Slowly decreasing	 Flow path is clogging up. Check critical flow orifice & sintered filter. Replace particulate filter Developing leak in pneumatic system to vacuum (developing valve failure)
PRES	SMPPRS	Sample gas pressure upstream of the critical flow orifice.	Constant within atmospheric changes	Slowly increasing Slowly decreasing	 Flow path is clogging up. Check critical flow orifice & sintered filter. Replace particulate filter Developing leak in pneumatic system to vacuum (developing valve failure)
VAC	VACUUM	Gas pressure downstream of the critical flow orifice (e.g. inside reaction cell.	Constant within atmospheric changes	Fluctuating	Developing leak in pneumatic system

 Table 8-1: Predictive Uses for Test Functions

TEST FUNCTION	IDAS FUNCTION	CONDITION	BEHAV EXPECTED	IOR ACTUAL	INTERPRETATION
SAMP FL	SMPFLW	Standard Operation	Stable	Slowly Decreasing	 Flow path is clogging up. Check critical flow orifice & sintered filter. Replace particulate filter
DRK PMT	DRKPMT	PMT output when UV Lamp shutter closed	Constant within ±20 of check- out value	Significantly increasing	 PMT cooler failure Shutter Failure
SO2 Concentration	CONC1	Standard configuration at span	stable for constant concentration	Decreasing over time	 Drift of instrument response; UV Lamp output is excessively low.
				Fluctuating	Leak in gas flow path.
			Stable and near 100%	Fluctuating or Slowly increasing	 UV detector wearing out UV source Filter developing pin holes
LAMP RATIO	LAMPR Standard Operation	Slowly deceasing		 UV detector wearing out Opaque oxides building up on UV source Filter UV lamp aging 	

Theory of Operation

9.1 The UV Light Path

The UV light path of the 6400EH is similar to that of the 6400E (see Section 10.2 of the 6400E Manual). The main differences between the 6400EH and the 6400E are:

- The location of the reference detector (See Section 9.1.1 of this addendum).
- The methods used to reject for certain measurement interferents is different (see Section 9.1.2 of this manual).

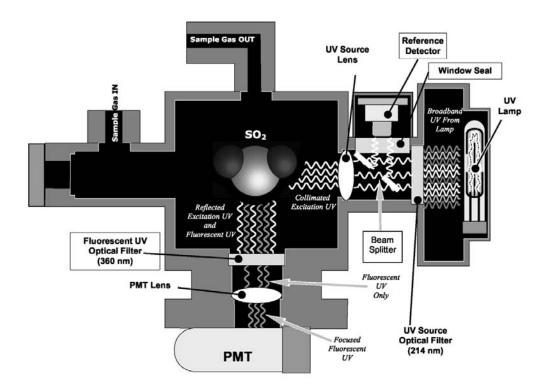


Figure 9-1: UV Light Path

9.1.1 The Reference Detector

A vacuum diode UV detector that converts UV light to a DC current is used to measure the intensity of the excitation UV source lamp. The location of the 6400EH reference detector differs from that of the 6400E.

- On the 6400E this detector is located directly across the reaction cell from the lamp where it can measure the output of the lamp directly. Because the 6400E is designed to measure relatively low concentrations of SO₂, enough of the lamp's 214 nm source light makes it through the reaction cell to get a reliable reading.
- On the 6400EH the detector is located between the UV lamp and the reaction cell and to the side. A beam splitter reflects a portion of the lamp output 90 degrees, through a window and onto the detector. This arrangement is required because nearly all of 214 nm UV source light entering the reaction cell is absorbed by the higher concentrations of SO₂ typically measured by the 6400EH.

A window transparent to UV light provides an air-proof seal that prevents ambient gas from contaminating the sample chamber.

9.1.2 Direct Measurement Interferences

The most common source of interference when measuring SO_2 is from other gases that fluoresce in a similar fashion to SO_2 when exposed to UV Light. The most significant of these are:

- A class of hydrocarbons called poly-nuclear aromatics (PNA) of which xylene and naphthalene are two prominent examples.
- Nitric oxide (NO), which fluoresces in a spectral range near to SO₂. For critical applications where high levels of NO are expected an optional 360 nm optical filter is available that improves the rejection of NO (contact customer service for more information).

The methods by which the Model 6400EH rejects interference for these substances differs from the M1 00E as follows.

• Since the typical application for which the 6400EH rarely includes the presences of hydrocarbons or PNA's, no hydrocarbon scrubber (kicker) is included in the 6400EH's base configuration. An optional scrubber (see Section 5.4 of this manual is available).

• On the other hand the typical 6400EH application often includes much higher concentrations of Nitric Oxide (NO), which fluoresces in a spectral range near that of SO₂. Therefore a 360 nm filter replaces the 330nm UV filter located between the PMT and the reaction cell in order to more efficiently reject for interference due to the higher concentrations of NO.

9.2 Pneumatic Operation

9.2.1 Sample Gas Flow

The flow of gas through the 6400EH UV Fluorescence SO_2 Analyzer is created by a small external pump that pulls air through the instrument. The 6400EH has no kicker to scrub hydrocarbons from the sample stream. Typical applications for the 6400EH do not have hydrocarbons in the sample stream.

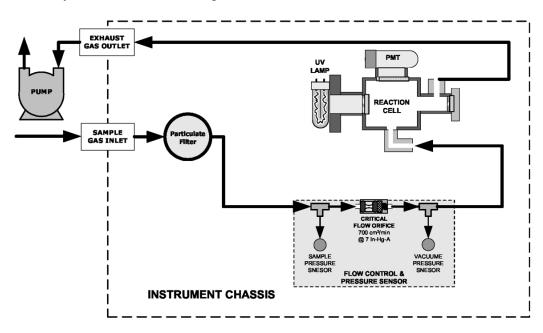


Figure 9-2: Pneumatic Diagram of the6400EH – Base Configuration

9.2.2 Pneumatic Sensors

The 6400EH uses two pneumatic sensors to verify gas flow. These sensors are located on a printed circuit assembly, called the pneumatic pressure/flow sensor board. This PCA is attached to a manifold containing the critical flow orifice that sets the instrument flow rate.

9.2.2.1 SAMPLE PRESSURE SENSOR

An absolute pressure transducer plumbed to the input of the analyzer's sample chamber is used to measure the pressure of the sample gas before it passes through the critical flow orifice. This is used to validate the critical flow condition (2:1 pressure ratio) through the instrument's critical flow orifice.

The actual sample gas pressure measurement is viewable through the analyzer's front panel display as the test function **PRES**.

9.2.2.2 VACUUM PRESSURE SENSOR

An absolute pressure transducer measures the pressure on the vacuum side of the critical flow orifice and is used to measure the sample gas pressure in the reaction cell. If the vacuum pressure is not in the correct range, a warning will be displayed by the software. Also, if the temperature/pressure compensation (TPC) feature is turned on, the output of this sensor is also used to supply pressure data for that calculation.

The actual pressure of the gas downstream from the critical flow orifice (including the gas inside the reaction cell) viewable through the analyzer's front panel display as the test function **VAC**.

9.2.2.3 SAMPLE FLOW CALCULATION

Unlike the 6400E, which uses a thermal-mass flow sensor to directly measure the gas flow though the instrument, the 6400EH calculates the gas as follows.

The ratio of the two pressures is measured and used to validate critical flow. If the ratio is not correct (< 2:1) the SAMPLE
 FLOW WARN message is activated. Also, the value of the SAMP FL test function is set to XXXX.

If the pressure ratio between the two sensors is valid $(\geq 2:1)$, the instrument calculates the flow based on sample gas pressure level **(PRES)** and is viewable via the front panel as the **SAMP FL** test function.

9.3 Electronic Operation

There following figures replace Figures 10-10 & 10-19 of the 6400E Manual. There is no IZS option, a vacuum pressure sensor replaces the 6400E's thermal-mass flow sensor and provision is made for the two span point valve option

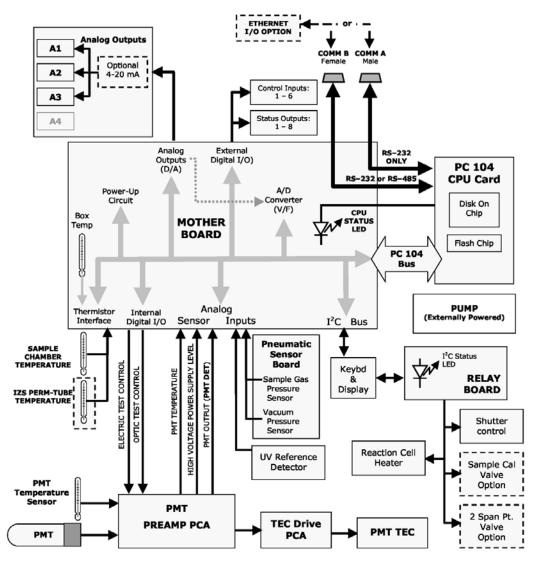


Figure 9-3: 6400EH Electronic Block Diagram

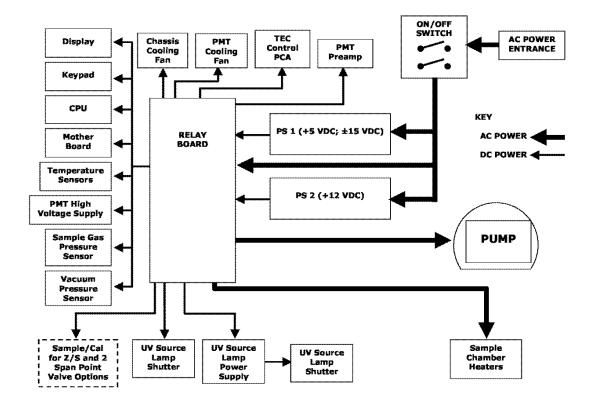


Figure 9-4: Model 6400EH Power Distribution Block Diagram

Troubleshooting & Repair

For the most part the information contained in Chapter 11 of the 6400E Manual is also applicable to the 6400EH. There are a few exceptions however.

10.1.1 Fault Diagnosis with Warning Messages

Table 10-1: Warning Messages - Indicated Failures

WARNING MESSAGE	FAULT CONDITION	POSSIBLE CAUSES	
VACUUM PRESS WARN	Gas pressure inside the reaction cell outside of warning limits.	If sample pressure is > 10 in-Hg: ◦ Pneumatic Leak ◦ Bad Pump→Rebuild Pump ◦ Failed pressure sensor/circuitry	

10.1.2 Fault Diagnosis with Test Functions

Table 10-2: Test Functions - Possible Causes for Out-Of-Range Values

TEST FUNCTION	NOMINAL VALUE(S)	POSSIBLE CAUSE(S)	
VAC	<9.1 IN-HG-A	Incorrect sample gas pressure could be due to: pneumatic leak; malfunctioning valve; malfunctioning pump; clogged flow orifices; sample inlet overpressure; faulty pressure sensor	

10.2 Subsystem Checkout

10.2.1 Pneumatic Sensor Assembly

The pneumatic sensor assembly of the 6400EH differs from that of the 6400E in that there is no flow sensor. Instead the assembly includes two pressure sensors located on either side of a critical flow orifice. The 6400EH software infers the gas flow rate by mathematically comparing the two pressure readings. If you suspect that one of the two pressure sensors is failing:

- 1. Cap the sample inlet.
- 2. After a few seconds, check the **VAC** and **PRES** test functions and verify that:
 - The VAC value matches the PRES value to within 1 In-Hg-A, and;
 - Both are less than 10 in-Hg-A (i.e. under vacuum).
- 3. Uncap the sample inlet and unplug the pump.
- 4. After a few minutes, the value **VAC** and **PRES** should match within 1 In-Hg-A, and read atmospheric pressure.
 - If the two sensors do not match or are significantly different from ambient atmospheric pressure, call Teledyne Analytical Instruments customer service.

10.3 Repair Procedures

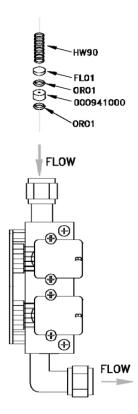
10.3.1 Repairing the Sample Gas Flow Control Assembly

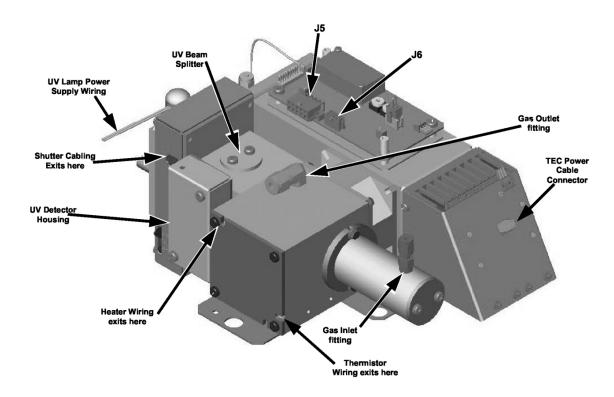
The Critical Flow Orifice is part of the pressure sensor and flow control assembly. The jewel orifice is protected by a sintered filter, so it is unusual for the orifice to need replacing, but it is possible for the sintered filter and o-rings to need replacing. See the Spare Parts list in Appendix B for part numbers and kits.

To replace the filter and/or orifice

- 1. Turn off Power to the analyzer.
- 2. Locate the pressure sensor / flow control assembly.
- 3. Disconnect the signal cable and pneumatic fittings.
- 4. Remove the assembly from the optical bench by removing the 2 screws at each end of the assembly.
- 5. The inlet end of the assembly is located at the end with the straight pneumatic fitting. Remove the fitting and the components as shown in the exploded view.
- 6. Replace the o-rings (p/n:OR01) and the sintered filter (p/n: FL01).

- 7. if you are replacing the Critical Flow Orifice itself (p/n:00094100), make sure that the side with the colored window (usually RED) is facing upstream to the flow gas flow.
- 8. Re-assemble in reverse order. See the Spares List in Appendix B for part numbers.
- 9. After re-connecting the power and pneumatic lines, flow check the instrument as described in the Section 11.5.2 of the 6400E Operator's Manual.




Figure 10-1: Flow Control Assembly

10.3.2 Sensor Module Repair & Cleaning

Note: After any repair or service has been performed on the sensor module, the 6400EH should be allowed to warm up for 60 minutes.

Always perform a leak check (See Section 11.5.1) and calibrate the analyzer (see Chapter 7) before placing it back in service.

The most significant difference between the 6400E sensor module and the 6400EH sensor module is the location of the reference detector. Therefore most of the procedures described in Section 11.6.3 apply to the 6400EH as well.

Exceptions are noted below:

Figure 10-2: Sensor Module Wiring and Pneumatic Fittings

10.3.2.1 ADJUSTING THE UV LAMP (PEAKING THE LAMP)

There are three ways in which ambient conditions can effect the UV Lamp output and therefore the accuracy of the SO_2 concentration measurement. These are:

Line Voltage Change: UV lamp energy is directly proportional to the line voltage. This can be avoided by installing adequate AC Line conditioning equipment such as a UPS/surge suppressor.

Lamp Aging - Over a period of months, the UV energy will show a downward trend, usually 30% in the first 90 days, and then a slower rate, until the end of useful life of the lamp. Periodically running the UV lamp calibration routine (see Section 6.9.7) will compensate for this until the lamp output becomes too low to function at all.

Lamp Positioning – The UV output level of the lamp is not even across the entire length of the lamp. Some portions of the lamp shine slightly more brightly than others. At the factory the position of the UV lamp is adjusted to optimize the amount of UV light shining through the UV filter/lens and into the reaction cell. Changes to the physical alignment of the lamp can affect the analyzers ability to accurately measure SO₂.

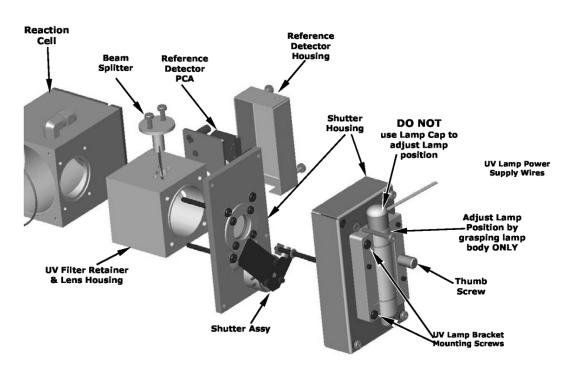


Figure 10-3: Shutter Assembly - Exploded View

ALWAYS WEAR UV-PROTECTIVE, SAFETY GLASSES WHEN WORKING WITH THE UV LAMP ASSEMBLY.

- 1. Set the analyzer display to show the signal I/O function, UVLAMP_SIGNAL (see Section 11.1.3). UVLAMP_SIGNAL is function 33.
- 2. Slightly loosen the large brass thumbscrew located on the shutter housing (see Figure 10-3) so that the lamp can be moved.
- 3. While watching the UVLAMP_SIGNAL reading, slowly rotate the lamp or move it back and forth vertically until the UVLAMP_SIGNAL reading is at its maximum.
 - **DO NOT** grasp the UV lamp by its cap when changing its position (see Figure 10-3). Always grasp the main body of the lamp.
- 4. Compare the UVLAMP_SIGNAL reading to the information in Table 10-3 and follow the instructions there.

Table 10-3:	Example	of HVPS	Power	Supply	Outputs
	r				r

UVLAMP_SIGNAL	ACTION TO BE TAKEN
3500mV±200mV.	No Action Required
> 4900mV at any time.	Adjust the UV reference detector potentiometer (see Figure 10-4) until UVLAMP_SIGNAL reads approximately 3600mV before continuing to adjust the lamp position.
>4500mV or < 1000mV	Adjust the UV reference detector potentiometer (see Figure 10-4) until UVLAMP_SIGNAL reads as close to 3500mV as possible.
.< 600mV	Replace the lamp.

5. Finger tighten the thumbscrew.

Note: DO NOT over-tighten the thumbscrew.

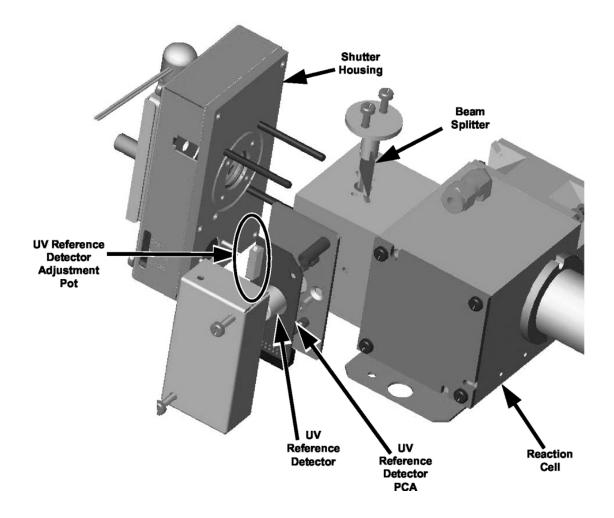


Figure 10-4: Location of UV Reference Detector Potentiometer

10.3.2.2 PMT HARDWARE CALIBRATION (FACTORY CAL)

The sensor module hardware calibration adjusts the slope of the PMT output when the instrument's slope and offset values are outside of the acceptable range and all other more obvious causes for this problem have been eliminated.

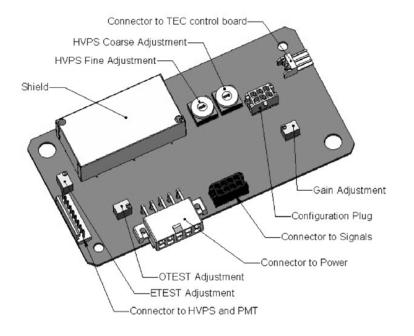


Figure 10-5: Pre-Amplifier Board Layout

- 1. Set the instrument reporting range type to **SNGL** (see Section 6.7.4 of the 6400E Manual)
- 2. Perform a zero–point calibration using zero air (see Chapter 7 of the 6400E Manual).
- 3. Let the instrument stabilize by allowing it to run for one hour.
- 4. Adjust the UV Lamp. (See Section 10.3.2.1 of this manual)
- 5. Perform a LAMP CALIBRATION procedure (see Section 6.9.7 of the 6400E Manual).
- 6. Locate the Preamp board (see Figure 3-4 of this manual).
- 7. Locate the Following Components On the Preamp board (see Figure 10-5 of this manual):
 - HVPS coarse adjustment switch (Range 0-9, then A-F)
 - HVPS fine adjustment switch (Range 0-9, then A-F)
 - Gain adjustment potentiometer (Full scale is 10 to 12 turns).
- 8. Set the HVPS coarse adjustment to its minimum setting (0).

- 9. Set the HVPS fine adjustment switch to its maximum setting (F).
- 10. Turn the gain adjustment potentiometer clockwise to its maximum setting.
- 11. Set the front panel display to show **STABIL** (see Section 6.2.1 of the 6400E Manual)
- 12. Feed span gas into the analyzer.
- 13. Wait until the STABIL value is below 0.5 ppm,
- Note: Use a span gas equal to 80% of the reporting range. Example: for a reporting range of 200 ppm, use a span gas of 160 ppm.
 - 14. Scroll to the **OFFSET** function and record the value.
 - 15. Scroll to the **NORM PMT** value.
- Note: Do not overload the PMT by accidentally setting both adjustment switches to their maximum setting. This can cause permanent damage to the PMT.
 - 16. Determine the target **NORM PMT** value according to the following formulas.
 - If the reporting range is set for ≤ 500 ppm (the instrument will be using the 500 ppm physical range):

Target **NORM PMT** = (8 x span gas concentration) + **OFFSET**

• If the reporting range is set for $\geq 2,001$ ppb (the instrument will be using the 5,000 ppm physical range):

Target **NORM PMT** = (0.8 x span gas concentration) +**OFFSET**

EXAMPLE: If the **OFFSET** is 33 mV, the Reporting Range is 1000 ppm, the span gas should be 800 PPM SO_2 and the calculation would be:

Target NORM PMT = $(0.8 \times 800) + 33 \text{ mV}$ Target NORM PMT = 640 + 33 mVTarget NORM PMT = 673 mV

17. Set the HVPS coarse adjustment switch to the lowest setting that will give you more than the target **NORM PMT** signal from Step 16.

- 18. The coarse adjustment typically increments the **NORM PMT** signal in 100-300 mV steps.
- 19. Adjust the HVPS fine adjustment such that the **NORM PMT** value is at or just above the target **NORM PMT** signal from Step 16.
- 20. Continue adjusting the both the coarse and fine switches until **NORM PMT** is as close to (but not below) the target **NORM PMT** value from Step 16.
- 21. Adjust gain adjustment potentiometer until the **NORM PMT** value is ± 10 mV of the target level from Step 16.
- 22. Perform span calibration (see Chapter 7 of the 6400E Manual)
- 23. Scroll to the **SLOPE** function and record the value.
- 24. If the value of the **SLOPE** is between 0.900 and 1.100 the PMT Hardware calibration is complete.
- 25. If the value of the **SLOPE** is less than 0.900 or greater than 1.100:
 - a. Multiply the slope value from step 22 by the norm PMT value from step 19.
 - b. Repeat steps 17 through 24 using this new value for **NORM PMT**.

10.4 Technical Assistance

If this manual and its trouble-shooting / repair sections do not solve your problems, technical assistance may be obtained from:

Teledyne Analytical Instruments 16830 Chestnut Street City of Industry, CA 91749-1580

Telephone: (626) 961-9221 TWX: (910) 584-1887 TDYANYL COID Fax: (626) 961-2538

or from our website at: <u>www.teledyne-ai.com</u>.

Before you contact customer service, fill out the problem report form in Appendix C.

Appendix A — Version Specific Software Documentation

- APPENDIX A-1: Model 6400EH Software Menu Trees
- **APPENDIX A-2:** Model 6400EH Setup Variables Available Via Serial I/O
- **APPENDIX A-3:** Model 6400EH Warnings and Test Measurements Via Serial I/O
- APPENDIX A-4: Model 6400EH Signal I/O Definitions
- APPENDIX A-5: Model 6400EH IDAS Functions
- **APPENDIX A-6:** Model 6400EH Terminal Command Designators

Appendix A-1: 6400EH Software Menu Trees, Revision C.0

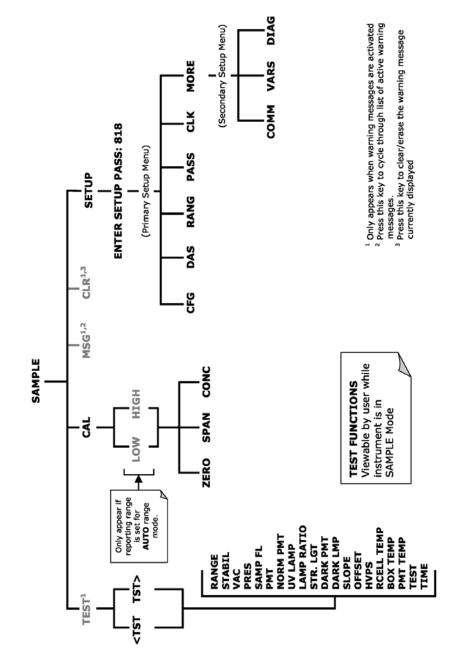
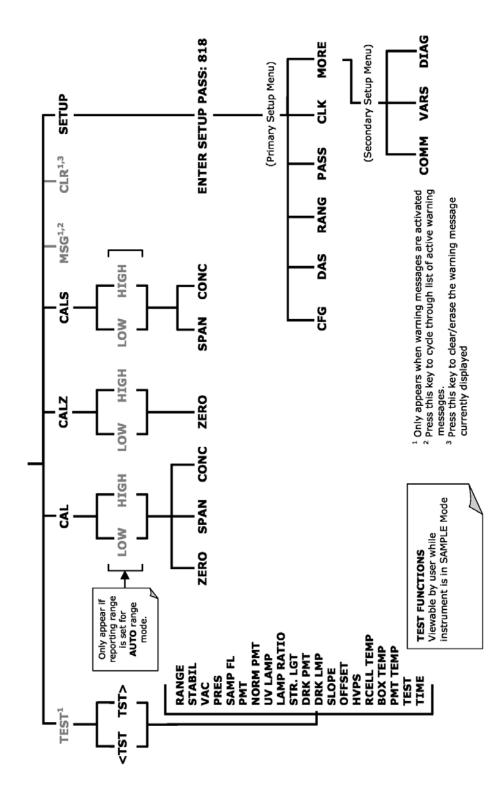



Figure A-1: Basic Sample Display Menu

UV Fluorescence SO2 Analyzer

Figure A-2: Sample Display Menu - Z/S Valve Option installed

Teledyne Analytical Instruments

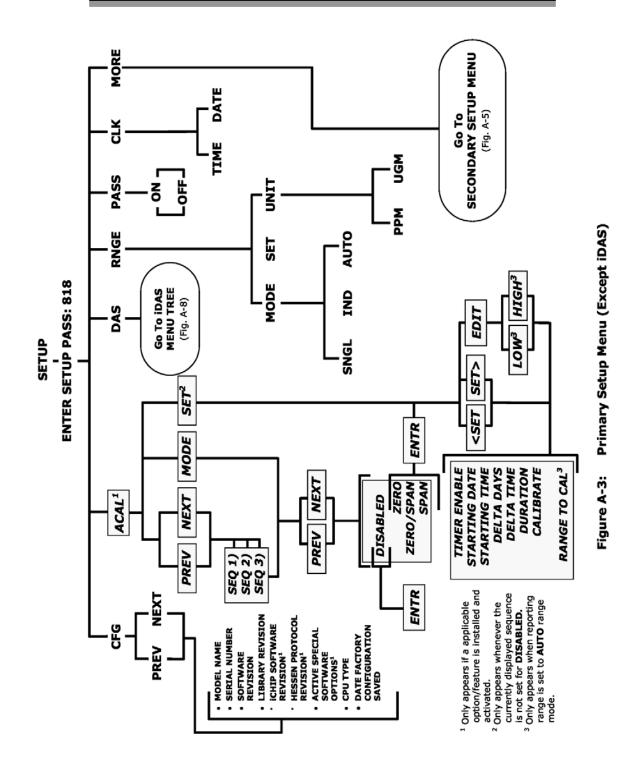


Figure A-3: Primary Setup Menu (Except iDAS)

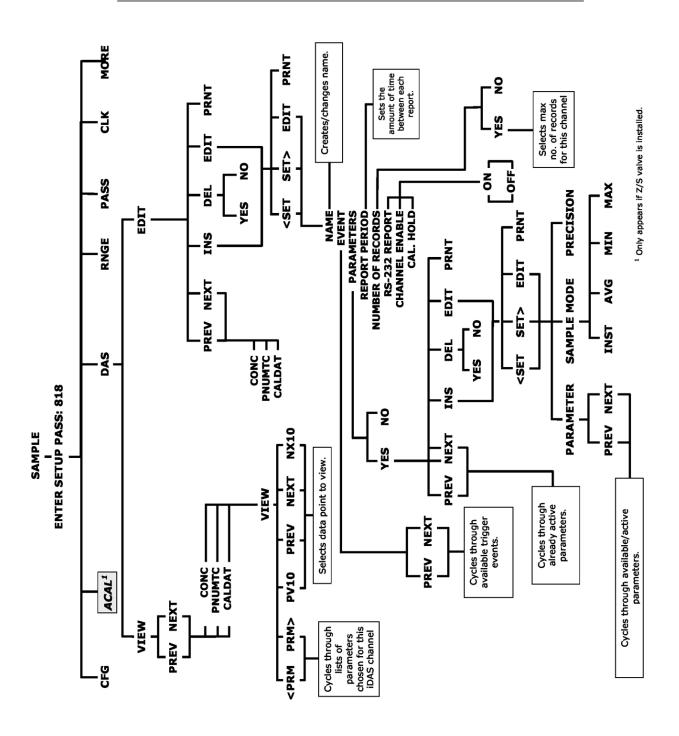
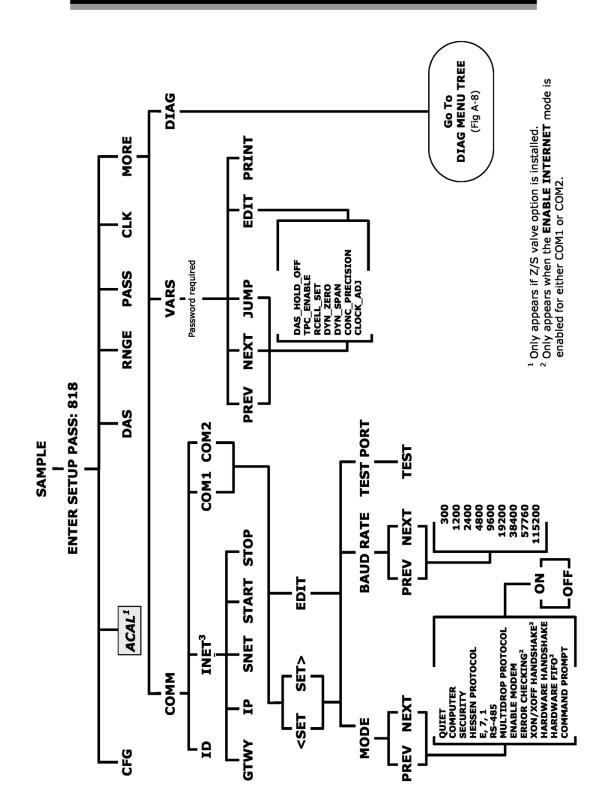



Figure A-4: Primary Setup Menu (iDAS)

Appendix A

Figure A-5: Secondary Setup Menu (COMM & VARS)

Model 6400EH

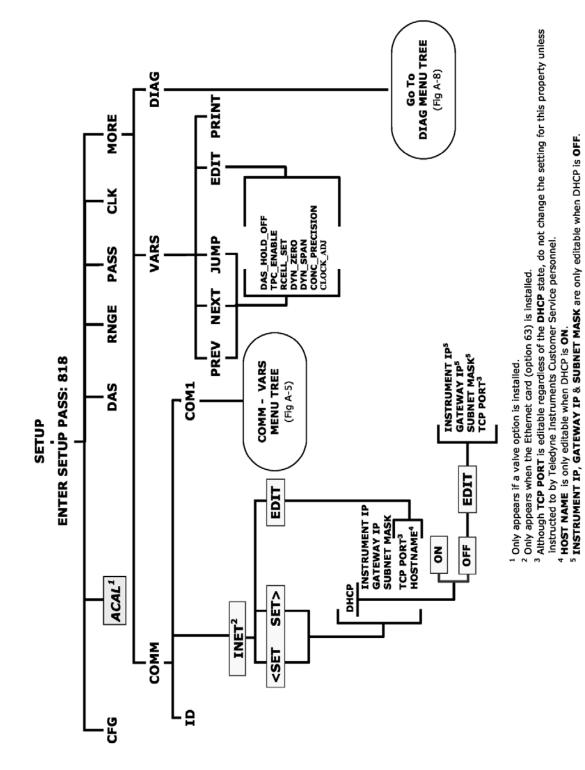


Figure A-6: Secondary Setup Menu (COMM Menu with Ethernet Card)

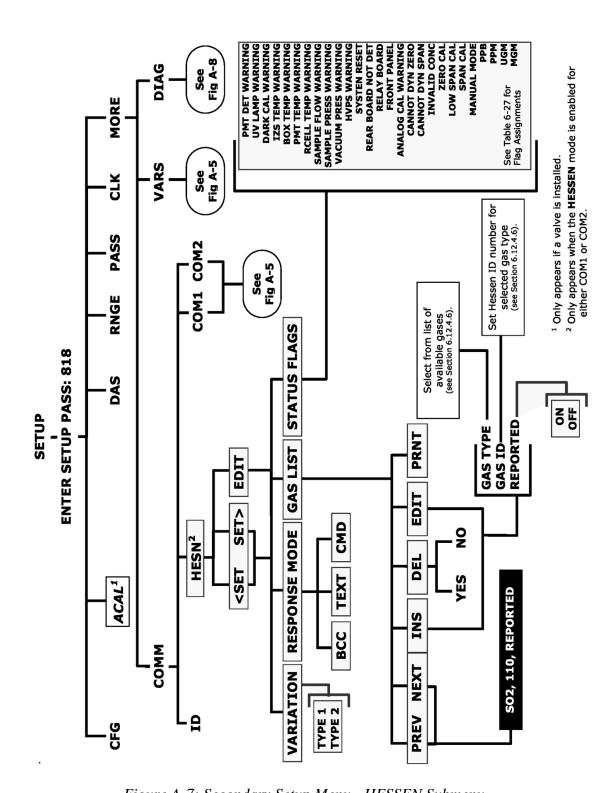


Figure A-7: Secondary Setup Menu - HESSEN Submenu

Teledyne Analytical Instruments

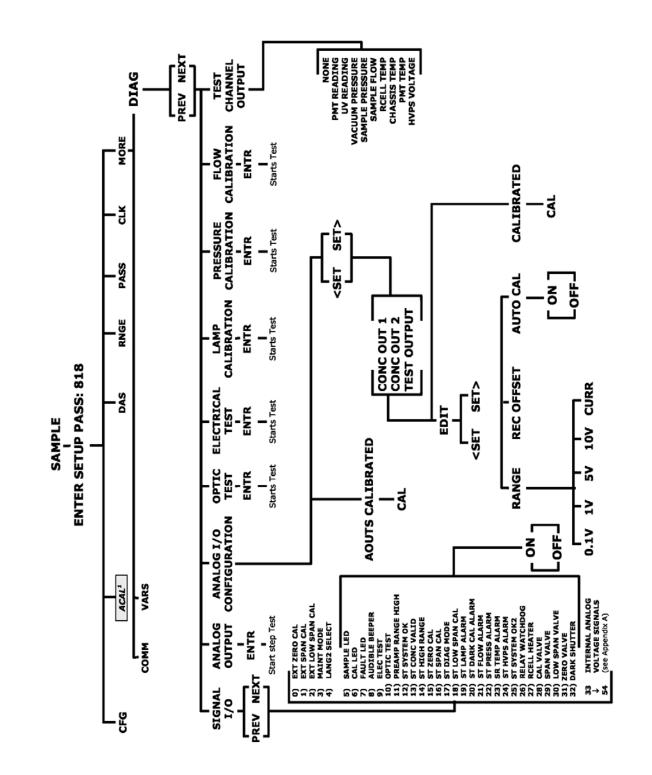


Figure A-8: Secondary Setup Menu (DIAG)

Appendix A-2: Setup Variables For Serial I/O, Revision C.0

SETUP VARIABLE	NUMERIC UNITS	DEFAULT VALUE	VALUE RANGE	DESCRIPTION
DAS_HOLD_OFF	Minutes	15	0.5–20	Duration of DAS hold off period.
TPC_ENABLE		ON	OFF, ON	ON enables temperature and pressure compensation; OFF disables it.
		50		
RCELL_SET	°C	Warnings 45–55	30-70	Reaction cell temperature set point and warning limits.
DYN_ZERO	_	OFF	OFF, ON	ON enables contact closure dynamic zero; OFF disables it.
DYN_SPAN	_	OFF	OFF, ON	ON enables contact closure dynamic span; OFF disables it.
CONC_PRECISION	_	1	AUTO, 0, 1, 2, 3, 4	Number of digits to display to the right of the decimal point for concentrations on the display. Enclose value in double quotes (") when setting from the RS-232 interface.
CLOCK_ADJ	Sec./Day	0	-60–60	Time-of-day clock speed adjustment.
LANGUAGE_SELECT	_	ENGL	ENGL, SECD, EXTN	Selects the language to use for the user interface. Enclose value in double quotes (") when setting from the RS-232 interface.
MAINT_TIMEOUT	Hours	2	0.1–100	Time until automatically switching out of software-controlled maintenance mode.
			33 MS, 66 MS,	
CONV_TIME		33 MS	133 MS 266 MS	Conversion time for PMT and UV detector channels. Enclose value in
CONV_TIME	—	33 1013	533 MS, 1 SEC,	double quotes (") when setting from the RS-232 interface.
			2 SEC	
DWELL TIME	Seconds	1	0.1–10	Dwell time before taking each sample.
FILT_SIZE	Samples	30	1–480	Moving average filter size.
FILT_ASIZE	Samples	6	1–100	Moving average filter size in adaptive mode.
FILT_DELTA	PPM	10	1–100	Absolute change to trigger adaptive filter.
FILT_PCT	%	5	1–100	Percent change to trigger adaptive

SETUP VARIABLE	NUMERIC UNITS	DEFAULT VALUE	VALUE RANGE	DESCRIPTION
				filter.
FILT_DELAY	Seconds	180	0–300	Delay before leaving adaptive filter mode.
FILT_ADAPT	_	ON	OFF, ON	ON enables adaptive filter; OFF disables it.
DIL_FACTOR	—	1	0.1–1000	Dilution factor if dilution enabled with FACTORY_OPT variable.
USER_UNITS	_	PPM	PPM, UGM	Concentration units for user interface. Enclose value in double quotes (") when setting from the RS- 232 interface.
LAMP CAL	mV	3500	1000–5000	Last calibrated UV lamp reading.
LAMP GAIN	—	0.9	0.5–1.5	UV lamp compensation attenuation factor.
TEMPCO_GAIN	_	0	0–2	Temperature coefficient attenuation factor for pressure readings.
SLOPE CONST	—	6.25	0.1–10	Constant to make visible slope close to 1.
DARK_ENABLE	—	ON	OFF, ON	ON enables PMT/UV dark calibration; OFF disables it.
DARK_FREQ	Minutes	30,	0.1–1440	Dark calibration period.
DARK LAMP OFF	Seconds	1	0.01–10	Dark calibration lamp off period.
DARK_PRE_DWELL	Seconds	10	1–60	Dwell time after closing dark shutter or turning off lamp or selecting preamp range.
DARK POST DWELL	Seconds	30	1–180	Dwell time after opening dark shutter or turning on lamp.
DARK_SAMPLES	Samples	5	1–10	Number of dark samples to average.
DARK_FSIZE	Samples	2	1–100	Dark offset moving average filter size.
DARK_LIMIT	mV	400	0–1000	Maximum dark offset allowed.
SO2 SPAN1	Conc	4000	0.1–50000	Target SO2 concentration during span calibration of range 1.
SO2_SLOPE1	PPM/mV	1	0.25–4	SO2 slope for range 1.
SO2_OFFSET1	mV	0	-1500–1500	SO2 offset for range 1.
SO2 SPAN2	Conc	4000	0.1–50000	Target SO2 concentration during span calibration of range 2.
SO2_SLOPE2	PPM/mV	1	0.25–4	SO2 slope for range 2.
SO2_OFFSET2	mV	0	-1500–1500	SO2 offset for range 2.
RANGE MODE	—	SNGL	SNGL, DUAL,	Range control mode. Enclose value in double quotes (") when setting

Appendix A

SETUP VARIABLE	NUMERIC UNITS	DEFAULT VALUE	VALUE RANGE	DESCRIPTION
			AUTO, AUTO2	from the RS-232 interface.
PHYS_RANGE1	PPM	500	5–10000	Low pre-amp range.
PHYS_RANGE2	PPM	5500	5–10000	High pre-amp range.
CONC_RANGE1	Conc	5000	0.1–50000	D/A concentration range 1.
CONC_RANGE2	Conc	5000	0.1–50000	D/A concentration range 2.
SAMP_FLOW_SET	cc/m	700	0–1200	Sample flow set point for flow calculation and warning limits.
		1		Sample flow slope correction factor
SAMP_FLOW_SLOPE	_	Warnings: 350–1200	0.5–1.5	(adjusted flow = measured flow x slope).
VAC_SAMP_RATIO		0.53	0.1–2	Maximum vacuum pressure/ sample pressure ratio for valid sample flow calculation.
		29.92		Sample pressure set point for
SAMP_PRESS_SET	"Hg	Warnings 15–35	0–100	pressure compensation and warning limits.
SAMP PRESS SLOPE		1	0.5–1.5	Sample pressure slope correction factor (adjusted pressure = measured pressure x slope).
	<i></i>	6		Vacuum pressure set point for
VAC_PRESS_SET	"Hg	Warnings: 3-10		pressure compensation and warning limits.
		30		
BOX SET	°C	Warnings: 8-50	5-60	Box temperature warning limits. Set point is not used.
	7	7		PMT temperature set point and
PMT_SET	Ŷ	Warnings: 2–12	0-40	warning limits.
				RS-232 COM1 mode flags. Add values to combine flags.
				1 = quiet mode
				2 = computer mode
				4 = enable security
RS232_MODE	BitElog	0	0-65535	16 = enable Hessen protocol
	BitFlag	U	0-00000	Must power-cycle instrument for these options to fully take effect.
				32 = enable multi-drop
				64 = enable modem
				128 = ignore RS-232 line errors
				256 = disable XON / XOFF support

UV Fluorescence SO2 Analyzer

SETUP VARIABLE	NUMERIC UNITS	DEFAULT VALUE	VALUE RANGE	DESCRIPTION
				512 = disable hardware FIFOs
				1024 = enable RS-485 mode
				2048 = even parity, 7 data bits,
				1 stop bit
				4096 = enable command prompt
BAUD_RATE	_	19200	300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200	RS-232 COM1 baud rate. Enclose value in double quotes (") when setting from the RS-232 interface.
		"AT Y0 &D0		RS-232 COM 1 modem initialization
		&H0 &I0	Any character in the allowed	string. Sent verbatim plus carriage return to modem on power up or
MODEM_INIT	—	S0=2 &B0	character set.	manually.
		&N6 &M0 E0	Up to 100 characters long.	Enclose value in double quotes (") when setting from the RS-232
		Q1 &W0"		interface.
RS232_MODE2	BitFlag	0	0–65535	RS-232 COM2 mode flags. (Same settings as RS232_MODE.)
			300, 1200,	
			2400, 4800,	RS-232 COM2 baud rate. Enclose
BAUD_RATE2	—	19200	9600, 19200,	value in double quotes (") when
			38400, 57600, setting from the RS-232 in	setting from the RS-232 intenace.
			115200	
		"AT Y0 &D0 &H0 &I0	Any character in	RS-232 COM2 modem initialization string. Sent verbatim plus carriage
		S0=2 &B0	the allowed character set.	return to modem on power up or manually.
MODEM_INIT2	_	&N6 &M0 E0	Up to 100	Enclose value in double quotes (")
		Q1 &W0"	characters long.	when setting from the RS-232 interface.
RS232_PASS	Password	940331	0–9999999	RS-232 log on password.
MACHINE_ID	ID	100	0-9999	Unique ID number for instrument.
	<u></u>	100		RS-232 interface command prompt.
		"Cmd> "	Any character in the allowed character set.	Displayed only if enabled with RS232 MODE variable.
COMMAND_PROMPT		Unitz	Up to 100 characters long.	Enclose value in double quotes (") when setting from the RS-232 interface.
			NONE,	Diagnostic analog output ID.
TEST_CHAN_ID	_	NONE		Enclose value in double quotes (")
		NONE	UV READING,	when setting from the RS-232 interface.
			VACUUM	

SETUP VARIABLE	NUMERIC UNITS	DEFAULT VALUE	VALUE RANGE	DESCRIPTION
			PRESSURE,	
			SAMPLE PRESSURE,	
			SAMPLE FLOW,	
			RCELL TEMP,	
			CHASSIS TEMP,	
			PMT TEMP,	
			HVPS VOLTAGE	
REMOTE_CAL_MODE	_	LOW	LOW, HIGH	Range to calibrate during contact- closure and Hessen calibration. Enclose value in double quotes (") when setting
PASS_ENABLE	_	OFF	OFF, ON	ON enables passwords; OFF disables them.
STABIL_FREQ	Seconds	10	1–300	Stability measurement sampling period.
STABIL_SAMPLES	Samples	25	2–40	Number of samples in concentration stability reading.
	Seconds	2	0.5–30	Reaction cell temperature control cycle period.
RCELL_PROP	1/ºC	0.3 (prop. band = 3 .3°C)	0-10	Reaction cell temperature PID proportional coefficient.
RCELL INTEG	_	0.005	0–10	Reaction cell temperature PID integral coefficient.
RCELL_DERIV	_	0.5	0–10	Reaction cell temperature PID derivative coefficient.
		550		High voltage power supply warning
HVPS_SET	Volts	Warnings: 400–700	0–2000	limits. Set point is not used.
		1000		UV lamp and PMT detector warning
DETECTOR_LIMIT	mV	Warnings: 600-4995	0–5000	limits. Set point is not used.
SERIAL_NUMBER	_	"00000000"	Any character in the allowed character set. Up to 100 characters long.	Unique serial number for instrument. Enclose value in double quotes (") when setting from the RS-232 interface.

UV Fluorescence SO2 Analyzer

SETUP VARIABLE	NUMERIC UNITS	DEFAULT VALUE	VALUE RANGE	DESCRIPTION		
DISP_INTENSITY	_	HIGH	HIGH, MED, LOW, DIM	Front panel display intensity. Enclose value in double quotes (") when setting from the RS-232 interface.		
I2C_RESET_ENABLE	_	ON	OFF, ON	I2C bus automatic reset enable.		
				Time-of-day clock format flags.		
				Enclose value in double quotes (") when setting from the RS-232 interface.		
				"%a" = Abbreviated weekday name.		
				"%b" = Abbreviated month name.		
				"%d" = Day of month as decimal number $(01 - 31)$.		
	CLOCK FORMAT — "TIME=%H: % M:%S"			"%H" = Hour in 24-hour format (00 – 23).		
				"%I" = Hour in 12-hour format (01 – 12).		
			"IIME=%H:	"IME=%H: the allow	Any character in the allowed	"%j" = Day of year as decimal number (001 – 366).
CLOCK FORMAT		character set. Up to 100 characters long.	"%m" = Month as decimal number (01 – 12).			
		characters long.	"%M" = Minute as decimal number (00 – 59).			
				"%p" = A.M./P.M. indicator for 12- hour clock.		
				"%S" = Second as decimal number (00 – 59).		
				"%w" = Weekday as decimal number $(0 - 6;$ Sunday is 0).		
				"%y" = Year without century, as decimal number (00 – 99).		
			"%Y" = Year with century, as decimal number.			
				"%%" = Percent sign.		

SETUP VARIABLE	NUMERIC UNITS	DEFAULT VALUE	VALUE RANGE	DESCRIPTION
				Factory option flags. Add values to combine flags.
				1 = enable dilution factor
				2 = zero/span valves installed
FACTORY_OPT			valves installed)	4 = IZS installed (implieszero/span valves installed)
				8 = low span valve installed
	BitFlag	0	0–65535	16 = display units in concentration field
				32 = enable software-controlled maintenance mode
				64 = enable lamp power analog output
				128 = enable switch-controlled maintenance mode
				2048 = enable Internet option

Appendix A-3: Warnings and Test Functions, Revision C.0

Tuble II 2. 0100EII Walking Incisiages, Revision C.0			
NAME	MESSAGE TEXT	DESCRIPTION	
WSYSRES	SYSTEM RESET	Instrument was power-cycled or the CPU was reset.	
WDATAINIT	DATA INITIALIZED	Data storage was erased.	
WCONFIGINIT	CONFIG INITIALIZED	Configuration storage was reset to factory configuration or erased.	
WPMT	PMT DET WARNING	PMT detector outside of warning limits specified by DETECTOR_LIMIT variable.	
WUVLAMP	UV LAMP WARNING	UV lamp reading outside of warning limits specified by DETECTOR_LIMIT variable.	
WSAMPFLOW	SAMPLE FLOW WARN	Sample flow outside of warning limits specified by SAMP_FLOW_SET variable.	
WSAMPPRESS	SAMPLE PRESS WARN	Sample pressure outside of warning limits specified by	
VISAMPPRESS	SAMPLE PRESS WARN	SAMP_PRESS_SET variable.	
WVACPRESS	VACUUM PRESS WARN	Vacuum pressure outside of warning limits specified by VAC_PRESS_SET variable.	
WBOXTEMP	BOX TEMP WARNING	Chassis temperature outside of warning limits specified by <i>BOX_SET</i> variable.	
WRCELLTEMP	RCELL TEMP WARNING	Reaction cell temperature outside of warning limits specified by <i>RCELL_SET</i> variable.	
WIZSTEMP	IZS TEMP WARNING	IZS temperature outside of warning limits specified by IZS_SET variable.	
WPMTTEMP	PMT TEMP WARNING	PMT temperature outside of warning limits specified by <i>PMT_SET</i> variable.	
WDARKCAL	DARK CAL WARNING	Dark offset above limit specified by DARK_LIMIT variable.	
WHVPS	HVPS WARNING	High voltage power supply output outside of warning limits specified by <i>HVPS_SET</i> variable.	
WDYNZERO	CANNOT DYN ZERO	Contact closure zero calibration failed while DYN_ZERO was set to ON.	
WDYNSPAN	CANNOT DYN SPAN	Contact closure span calibration failed while YN_SPAN was set to ON.	
WREARBOARD	REAR BOARD NOT DET	Rear board was not detected during power up.	
WRELAYBOAR D	RELAY BOARD WARN	Firmware is unable to communicate with the relay board.	

Table A-2: 6400EH Warning Messages, Revision C.0

NAME	MESSAGE TEXT	DESCRIPTION
WFRONTPANEL	FRONT PANEL WARN	Firmware is unable to communicate with the front panel.
WANALOGCAL	ANALOG CAL WARNING	The A/D or at least one D/A channel has not been calibrated.

Table A-3: 6400EH Test Functions, Revision C.0

TEST FUNCTION	MESSAGE TEXT	DESCRIPTION
RANGE	RANGE=500.0 PPB	D/A range in single or auto-range modes.
RANGE1	RANGE1=500.0 PPB	D/A #1 range in independent range mode.
RANGE2	RANGE2=500.0 PPB	D/A #2 range in independent range mode.
STABILITY	STABIL=0.0 PPB	Concentration stability (standard deviation based on setting of STABIL_FREQ and STABIL_SAMPLES).
VACUUM	VAC=9.1 IN-HG-A	Vacuum pressure.
SAMPPRESS	PRES=29.9 IN-HG-A	Sample pressure.
SAMPFLOW	SAMP FL=700 CC/M	Sample flow rate.
PMTDET	PMT=762.5 MV	Raw PMT reading.
NORMPMTDET	NORM PMT=742.9 MV	PMT reading normalized for temperature, pressure, auto-zero offset, but not range.
UVDET	UV LAMP=3457.6 MV	UV lamp reading.
LAMPRATIO	LAMP RATIO=100.0 %	UV lamp ratio of current reading divided by calibrated reading.
STRAYLIGHT	STR. LGT=0.1 PPB	Stray light offset.
DARKPMT	DRK PMT=19.6 MV	PMT dark offset.
DARKLAMP	DRK LMP=42.4 MV	UV lamp dark offset.
SLOPE	SLOPE=1.061	Slope for current range, computed during zero/span calibration.
OFFSET	OFFSET=250.0 MV	Offset for current range, computed during zero/span calibration.
HVPS	HVPS=650 VOLTS	High voltage power supply output.
RCELLDUTY	RCELL ON=0.00 SEC	Reaction cell temperature control duty cycle.
RCELLTEMP	RCELL TEMP=52.1 C	Reaction cell temperature.
BOXTEMP	BOX TEMP=35.5 C	Internal chassis temperature.
PMTTEMP	PMT TEMP=7.0 C	PMT temperature.
IZSDUTY	IZS ON=0.00 SEC	IZS temperature control duty cycle.

TEST FUNCTION	MESSAGE TEXT	DESCRIPTION
IZSTEMP	IZS TEMP=52.2 C	IZS temperature.
SO2	SO2=261.4 PPB	SO ₂ concentration for current range.
TESTCHAN	TEST=3721.1 MV	Value output to <i>TEST_OUTPUT</i> analog output, selected with <i>TEST_CHAN_ID</i> variable.
CLOCKTIME TIME=10:38:27		Current instrument time of day clock.

Appendix A-4: 6400EH Signal I/O Definitions, Revision C.0

SIGNAL NAME	BIT OR CHANNEL NUMBER	DESCRIPTION		
Internal inputs, U7,	Internal inputs, U7, J108, pins 9–16 = bits 0–7, default I/O address 322 hex			
	0–7	Spare		
Internal outputs, U	8, J108, pins 1–8 = bits 0-	-7, default I/O address 322 hex		
	0	1 = electrical test on		
ELEC_TEST	0	0 = off		
	4	1 = optic test on		
OPTIC TEST	1	0 = off		
	0	1 = select high preamp range		
PREAMP RANGE HI	2	0 = select low range		
	3–5	Spare		
		1 = reset I2C peripherals		
I2C_RESET	6	0 = normal		
		0 = hardware reset 8584 chip		
I2C DRV RST	7	1 = normal		
Control inputs, U11	, J1004, pins 1–6 = bits 0-	-5, default I/O address 321 hex		
	0	0 = go into zero calibration		
EXT ZERO CAL		1 = exit zero calibration		
	1	0 = go into span calibration		
EXT SPAN CAL		1 = exit span calibration		
	0	0 = go into low span calibration		
EXT LOW SPAN	2	1 = exit low span calibration		
	3–5	Spare		
	6–7	Always 1		
Control inputs, U14, J1006, pins 1–6 = bits 0–5, default I/O address 325 hex				
	0–5	Spare		
	6–7	Always 1		
Control outputs, U17, J1008, pins 1–8 = bits 0–7, default I/O address 321 hex				

Table A-4: 6400EH Signal I/O Definitions, Revision C.0

SIGNAL NAME	BIT OR CHANNEL NUMBER	DESCRIPTION	
	0–7	Spare	
Control outputs, U21	Control outputs, U21, J1008, pins 9–12 = bits 0–3, default I/O address 325 hex		
	0–3	Spare	
Alarm outputs, U21,	J1009, pins 1–12 = bits 4	–7, default I/O address 325 hex	
		1 = system OK	
ST SYSTEM OK2	4	0 = any alarm condition or in diagnostics mode	
	5–7	Spare	
A status outputs, U2	4, J1017, pins 1–8 = bits (0–7, default I/O address 323 hex	
ST SYSTEM OK	0	0 = system OK	
ST_SYSTEM_OK	0	1 = any alarm condition	
		0 = conc. valid	
ST_CONC_VALID	1	1 = warnings or other conditions that affect validity of concentration	
	2	0 = high auto-range in use	
ST_HIGH_RANGE	2	1 = low auto-range	
ST_ZERO_CAL	3	0 = in zero calibration	
	5	1 = not in zero	
ST_SPAN_CAL	4	0 = in span calibration	
		1 = not in span	
ST_DIAG_MODE 5		0 = in diagnostic mode	
	0	1 = not in diagnostic mode	
ST_LOW_SPAN_CAL	6	0 = in low span calibration	
	0	1 = not in low span	
	7	Spare	
B status outputs, U2	7, J1018, pins 1–8 = bits (0–7, default I/O address 324 hex	
ST_LAMP_ALARM	0	0 = lamp intensity low	
	5	1 = lamp intensity OK	
ST_DARK_CAL_ALARM	1	0 = dark cal. warning	
		1 = dark cal. OK	
ST_FLOW_ALARM	2	0 = any flow alarm	
	-	1 = all flows OK	
ST_PRESS_ALARM	3	0 = any pressure alarm	

SIGNAL NAME	BIT OR CHANNEL NUMBER	DESCRIPTION
		1 = all pressures OK
	4	0 = any temperature alarm
ST_TEMP_ALARM	4	1 = all temperatures OK
	-	0 = HVPS alarm
ST_HVPS_ALARM	5	1 = HVPS OK
	6–7	Spare
Front pa	nel I2C keyboard, default	I2C address 4E hex
		0 = maintenance mode
MAINT_MODE	5 (input)	1 = normal mode
		0 = select second language
LANG2_SELECT	6 (input)	1 = select first language (English)
		0 = sample LED on
SAMPLE_LED	8 (output)	1 = off
		0 = cal. LED on
CAL_LED	9 (output)	1 = off
		0 = fault LED on
FAULT_LED	10 (output)	1 = off
AUDIBLEBEEPER	14 (output)	0 = beeper on (for diagnostic testing only)
		1 = off
Relay board d	igital output (PCF8575), d	efault I2C address 44 hex
RELAY_WATCHDOG	0	Alternate between 0 and 1 at least every 5 seconds to keep relay board active
	1	0 = reaction cell heater on
RCE LL_HEATER	Ι	1 = off
	2–3	Spare
		0 = IZS heater on
IZSHEATER	4	1 = off
	5	Spare
	6	0 = let cal. gas in
CAL VALVE		1 = let sample gas in

SIGNAL NAME	BIT OR CHANNEL NUMBER	DESCRIPTION	
SPAN VALVE	7	0 = let span gas in	
SPAN VALVE	1	1 = let zero gas in	
LOW SDAN VALVE	8	0 = let low span gas in	
LOW_SPAN_VALVE	0	1 = let sample gas in	
ZERO VALVE	9	0 = let zero gas in	
	,	1 = let sample gas in	
DARKSHUTTER	10	0 = close dark shutter	
BARKONOTTER	10	1 = open	
	11–15	Spare	
R	ear board primary MUX a	nalog inputs	
PMT_SIGNAL	0	PMT detector	
HVPS_VOLTAGE	1	HV power supply output	
PMT_TEMP	2	PMT temperature	
UVLAMP_SIGNAL	3	UV lamp intensity	
	4	Temperature MUX	
	5–6	Spare	
SAMPLE_PRESSURE	7	Sample pressure	
TEST_INPUT_8	8	Diagnostic test input	
REF_4096_MV	9	4.096V reference from MAX6241	
SAMPLE_FLOW	10	Sample flow rate	
VACUUM_PRESSURE	10	Vacuum pressure	
TEST_INPUT_11	11	Diagnostic test input	
	12–13	Spare (thermocouple input?)	
	14	DAC MUX	
REF_GND	15	Ground reference	
Rea	Rear board temperature MUX analog inputs		
BOX_TEMP	0	Internal box temperature	
RCELL_TEMP	1	Reaction cell temperature	
IZS_TEMP	2	IZS temperature	
	3	Spare	
TEMP_INPUT_4	4	Diagnostic temperature input	
TEMP_INPUT_5	5	Diagnostic temperature input	

SIGNAL NAME	BIT OR CHANNEL NUMBER	DESCRIPTION	
TEMP_INPUT_6	6	Diagnostic temperature input	
	7	Spare	
	Rear board DAC MUX and	alog inputs	
DAC_CHAN_0	0	DAC channel 0 loopback	
DAC_CHAN_1	1	DAC channel 1 loopback	
DAC_CHAN_2	2	DAC channel 2 loopback	
DAC_CHAN_3	3	DAC channel 3 loopback	
	Rear board analog outputs		
CONC_OUT_1	0	Concentration output #1	
CONC_OUT_2	1	Concentration output #2	
TEST_OUTPUT	2	Test measurement output	
	3	Spare	

Appendix A-5: 6400EH iDAS Functions, Revision C.0

NAME	DESCRIPTION
ATIMER	Automatic timer expired
EXITZR	Exit zero calibration mode
EXITLS	Exit low span calibration mode
EXITHS	Exit high span calibration mode
EXITMP	Exit multi-point calibration mode
SLPCHG	Slope and offset recalculated
EXITDG	Exit diagnostic mode
PMTDTW	PMT detector warning
UVLMPW	UV lamp warning
RCTMPW	Reaction cell temperature warning
PTEMPW	PMT temperature warning
SFLOWW	Sample flow warning
SPRESW	Sample pressure warning
VPRESW	Vacuum pressure warning
BTEMPW	Box temperature warning
<u>HVPSW</u>	High voltage power supply warning

Table A-5: 6400EH DAS Trigger Events, Revision C.0

Table A-6: 6400EH iDAS Functions, Revision C.0

NAME	DESCRIPTION	UNITS
PMTDET	PMT detector reading	mV
UVDET	UV lamp intensity reading	mV
LAMPR	UV lamp ratio of calibrated intensity	%
DRKPMT	PMT electrical offset mV	
DARKUV	UV lamp electrical offset mV	
SLOPE1	SO₂ slope for range #1 —	
SLOPE2	SO ₂ slope for range #2 —	
OFSET1	SO ₂ offset for range #1 mV	
OFSET2	SO ₂ offset for range #2 mV	

NAME	DESCRIPTION	UNITS
ZSCNC1	SO ₂ concentration for range #1 during zero/span calibration, just before computing new slope and offset	PPB
ZSCNC2	SO ₂ concentration for range #2 during zero/span calibration, just before computing new slope and offset	PPB
CONC1	SO ₂ concentration for range #1	PPB
CONC2	SO ₂ concentration for range #2	PPB
STABIL	SO ₂ concentration stability	PPB
STRLGT	Stray light reading	PPB
RCTEMP	Reaction cell temperature	°C
PMTTMP	PMT temperature	°C
SMPFLW	V Sample flow	
SMPPRS	MPPRS Sample pressure	
VACUUM Vacuum pressure		"Hg
BOXTMP Internal box temperature		°C
HVPS	High voltage power supply output	Volts
TEST8	Diagnostic test input (TEST_INPUT_8)	mV
TEST11	Diagnostic test input (TEST_INPUT_11)	mV
TEMP4	Diagnostic temperature input (TEMP_INPUT_4)	°C
TEMP5	Diagnostic temperature input (TEMP_INPUT_5)	°C
TEMP6	Diagnostic temperature input (TEMP_INPUT_6)	°C
REFGND	Ground reference (REF_GND)	mV
RF4096	4096 mV reference (REF_4096_MV)	mV

Appendix A-6: Terminal Command Designators, Revision C.0

COMMAND	ADDITIONAL COMMAND SYNTAX	DESCRIPTION
? [ID]		Display help screen and this list of commands
LOGON [ID]	password	Establish connection to instrument
LOGOFF [ID]		Terminate connection to instrument
	SET ALL name hexmask	Display test(s)
T [ID]	LIST [ALL name hexmask] [NAMES HEX]	Print test(s) to screen
ן טון ז	name	Print single test
	CLEAR ALL name hexmask	Disable test(s)
	SET ALL name hexmask	Display warning(s)
	LIST [ALL name hexmask] [NAMES HEX]	Print warning(s)
W [ID]	name	Clear single warning
	CLEAR ALL name hexmask	Clear warning(s)
	ZERO LOWSPAN SPAN [1 2]	Enter calibration mode
	ASEQ number	Execute automatic sequence
C [ID]	COMPUTE ZEROJSPAN	Compute new slope/offset
	EXIT	Exit calibration mode
	ABORT	Abort calibration sequence
	LIST	Print all I/O signals
	name[=value]	Examine or set I/O signal
	LIST NAMES	Print names of all diagnostic tests
ם ווסו	ENTER name	Execute diagnostic test
D [ID]	EXIT	Exit diagnostic test
	RESET [DATA] [CONFIG] [exitcode]	Reset instrument
	PRINT ["name"] [SCRIPT]	Print iDAS configuration
	RECORDS ["name"]	Print number of iDAS records

Table A-7: Terminal Command Designators, Revision C.0

COMMAND	ADDITIONAL COMMAND SYNTAX	DESCRIPTION
	REPORT ["name"] [RECORDS=number]	
	[FROM= <start date="">][TO=<end< td=""><td></td></end<></start>	
	date>] [VERBOSE COM PACT HEX] (Print	Print iDAS records
	DAS records)(date format:	
	MM/DD/YYYY(or YY) [HH:MM:SS]	
	CANCEL	Halt printing iDAS records
	LIST	Print setup variables
	name[=value [warn_low [warn_high]]]	Modify variable
	name="value"	Modify enumerated variable
V [ID]	CONFIG	Print instrument configuration
	MAINT ON OFF	Enter/exit maintenance mode
	MODE	Print current instrument mode
	DASBEGIN [<data channel="" definitions="">]</data>	Linkad iDAS configuration
	DASEND	Upload iDAS configuration
	CHANNELBEGIN propertylist CHANNELEND	Upload single iDAS channel
	CHANNELDELETE ["name"]	Delete iDAS channels

The command syntax follows the command type, separated by a space character. Strings in [brackets] are optional designators. The following key assignments also apply.

TERMINAL KEY ASSIGNMENTS		
ESC	Abort line	
CR (ENTER)	Execute command	
Ctrl-C	Switch to computer mode	
COMPUTER MODE KEY ASSIGNMENTS		
LF (line feed) Execute command		
Ctrl-T	Switch to terminal mode	

Appendix B - 6400EH Spare Parts List

B-1: 6400EH Spare Parts List

- Note: Use of replacement parts other than those supplied by TAI may result in non-compliance with European standard EN 61010-1.
 - 04624 Spare Parts List, 6400EH
 - 04527 Recommended Spare Parts Stocking Levels, 6400EH
 - 0435701 Kit, Expendables, 6400EH

Part Number	Description
053020200	ASSY, INLET MANIFOLD VALVE, SAMPLE
055120100	PCA, BURSTING UV DRIVER, 6400E, 43mA
057020100	PCA, MOTHERBOARD, E-SERIES, GEN-4
CN0000458	CONNECTOR, REAR PANEL, 12 PIN
CN0000520	CONNECTOR, REAR PANEL, 10 PIN
DS0000025	DISPLAY
FL0000001	FILTER, SS
FL0000003	FILTER, DFU
HW000005	FOOT, PUMP PACK
HW0000036	TFE TAPE, 1/4" (48 FT/ROLL)
HW0000090	SPRING, SS, FLOW CONTROL
HW0000093	SPRING, CHARCOAL SCRUBBER
HW0000101	ISOLATOR, PUMP PACK
HW0000149	SEALING WASHER, INLET VALVE
KIT000093	KIT, 214NM FILTER REPLACEMENT
KIT000095	KIT, COOLER REPLACEMENT

Part Number	Description
KIT000207	KIT, 6400E RELAY RETROFIT
KIT000219	KIT, 4-20MA CURRENT OUTPUT (E SERIES)
KIT000236	KIT, UV LAMP (SPARE) w/E-A ADAPTER*
OR0000001	O-RING, FLOW CONTROL
OR0000004	O-RING, OPTIC/CELL, CELL/TRAP
OR000006	O-RING, CELL/PMT
OR000007	O-RING, PMT/BARREL/CELL
OR0000015	O-RING, PMT FILTER
OR0000016	O-RING, UV LENS
OR0000025	O-RING, CHARCOAL SCRUBBER
OR0000027	O-RING, COLD BLOCK/PMT HOUSING & HEATSINK
OR0000048	O-RING, REF DETECTOR
OR0000050	O-RING, SEALING PLUG, INLET MANIFOLD
OR0000051	O-RING, SEALING PLUG, INLET MANIFOLD
OR0000060	O-RING, PRESSURE TRANSDUCER
OR000083	O-RING, PMT SIGNAL & OPTIC LED
OR0000084	O-RING, UV FILTER
OR0000094	O-RING, SAMPLE FILTER
PS0000037	PS, 40W SWITCHING, +5V, +/-15V(KB)*
PS0000038	PS, 60W SWITCHING, 12V(KB) *
PU0000005	PUMP, THOMAS 607, 115V/60HZ
PU0000006	PUMP, THOMAS 607, 220V/50HZ
PU0000011	KIT, THOMAS 607 REBUILD
PU0000054	PUMP, THOMAS 688, 100V/50-60HZ
PU0000064	KIT, THOMAS 688 REBUILD
RL0000015	RELAY, DPDT
SW0000051	SWITCH, POWER, CIRCUIT BREAKER
SW0000059	PRESSURE SENSOR, 0-15 PSIA, ALL SEN
WR000008	POWER CORD, 10A

B-2: Recommended Spare Parts Stocking Levels Model 6400EH

DADTNO	DESCRIPTION		UNITS				
PART NO	DESCRIPTION	1	2-5	6-10	11-20	21-30	
000940800	Orifice, 12 Mil		1	2	4	4	
002740000	Filter, 360 NM				1	2	
013400000	PMT, SO2				1	1	
014080100	Assy, HVPS, NOx/Sox					1	
014610000	Kit Replacement Cooler					1	
023400000	Beam Splitter				1	2	
023410000	Assy, Flow Module, 6400AH			1	2	3	
039550200	PCA, Relay Board			1	1	2	
045230200	PCA, Relay Board w/Diode Protection			1	1	2	
040010000	Assy, Fan, Rear Panel, E Series	1	1	2	4	4	
040030100	PCA, Press Sensors (1X), Flow, E Series		1	2	4	4	
041710000	CPU, Configuration E Series				1	1	
041800400	PCA, PMT PREAMP, VR, 6400E (KB)				1	1	
042580000	PCA, Keyboard				1	1	
042410200	Assy, Pump, Internal, 115/240VAC					1	
054710000	Assy, UV Lamp, 6400E		1	2	4	4	
045870100	PCA, Reference Detector, w/ADJ, 6400EH				1	2	
055120100	Assy, UV Lamp Driver, Bursting 43mA		1	1	2	2	
057020100	PCA, Motherboard, E Series				1	2	
DS0000025	Display				1	1	
FM0000004	Flowmeter				1	1	
SW0000059	Pressure Transducer					1	

	IZS/ZS Option					
055560000	Assy, Valve, 3-Way, 12V		1	2	2	4

	O2 OPTION			
OP000030	Oxygen Transducer, Paramagnetic, PM1158			1

B-3: 6400E/EH Expendables Kit

Part Number	Description	Quantity
018080000	KIT, DESSICANT BAGGIES (12)	1
FL0000001	FILTER, SS	1
HW0000020	SPRING	1
OR0000001	O-RING, FLOW CONTROL	1

Appendix C Warranty Questionnaire

_FAX NO
FIRMWARE REVISION:

PLEASE COMPLETE THE FOLLOWING TABLE: (NOTE: DEPENDING ON OPTIONS INSTALLED, NOT ALL TEST PARAMETERS SHOWN BELOW WILL BE AVAILABLE IN YOUR INSTRUMENT)

Parameter	Displayed As	Observed Value	Units	Nominal Range
Denge	DANCE		PPM	1 5000 DDM Standard
Range	RANGE		UG/M3	1-5000 PPM Standard
Stobility	STABIL		PPM	< 1 PPM with Zero Air
Stability	STABIL		UG/M3	<. I PPW with Zero Air
Vacuum	VACUUM		"Hg	4 – 10 "Hg
Sample Pressure	PRES		In-Hg-A	24 – 29
Sample Flow	SAMP FL		CC/MIN	700 ±10%
PMT Signal	РМТ		MV	0 ± 100 with Zero Air
Normalized PMT Signal	NORM PMT		MV	0 ± 100 with Zero Air
UV Lamp	UV LAMP		MV	1000 – 4800
	LAMP		25 100%	
UV Lamp Ratio	RATIO		%	35 – 120%

Parameter	Displayed As	Observed Value	Units	Nominal Range
Stray Light	STR. LGT		PPM	-50 to +100
Dark PMT	DRK PMT		MV	<200
Dark Lamp	DRK LMP		MV	-30 to 50
Slope	SLOPE		-	1.0 ± 0.3
Offset	OFFSET		MV	<200
High Voltage Power Supply	HVPS		V	400 – 750*
Reaction Cell Temperature	RCELL TEMP		°C	50 ± 1
Box Temperature	BOX TEMP		°C	Ambient + (3-7)
PMT Temperature	PMT TEMP		°C	7 ± 2
Time of Day	TIME		HH:MM:SS	

	Test Settings	_
Test Value	Observed Value	Acceptable Value
ETEST PMT Reading		2000 ± 1000MV
OTEST PMT Reading		2000 ± 20 MV

- 2. HAVE YOU PERFORMED A LEAK CHECK AND FLOW CHECK?
- 3. WHAT ARE THE FAILURE SYMPTOMS?
- 4. WHAT TEST HAVE YOU DONE TRYING TO SOLVE THE PROBLEM?

- 5. IF POSSIBLE, PLEASE INCLUDE A PORTION OF A STRIP CHART PERTAINING TO THE PROBLEM. CIRCLE PERTINENT DATA.
- 6. THANK YOU FOR PROVIDING THIS INFORMATION. YOUR ASSISTANCE ENABLES TELEDYNE TO RESPOND FASTER TO THE PROBLEM THAT YOU ARE ENCOUNTERING.

Teledyne Analytical Instruments 16830 Chestnut Street City of Industry, CA 91749-1580

Telephone: (626) 961-9221 TWX: (910) 584-1887 TDYANYL COID Fax: (626) 961-2538

www.teledyne-ai.com.

Appendix D - Electronic Schematics

DOCUMENT #	DOCUMENT TITLE	
03956	PCA, 03955, Relay Driver	
02173	PCA, 02172, Pressure Flow Sensor Board	
05703	PCA, 05702, Motherboard, E-Series Gen 4	
04181	PCA, 04180, PMT Preamp	
04259	PCA, 04258, Keyboard Display Interface	
01312	PCA, 04120, UV Detector Preamp	
04693	PCA, UV Lamp Driver, 6400EH	
04932	PCA, Thermo-Electric Cooler Board	
<u>04468</u>	PCA, Analog Output Series Res	

Table D-1: List of Included Electronic Schematics